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Nanoelectromechanical systems (NEMS) have recently been the subject of much
exciting research. They have been proposed for use in various applications such
as mass and force detection, RF processing, and investigating quantum effects in
the mechanical motion of resonators. Attempts to increase sensitivity for these
applications has led to further and further miniaturization of the mechanical de-
vices. When their size reaches the range of hundreds of nanometers, these devices
have active masses in the hundreds of the femtograms and operational frequencies
in the GHz. An ultimate limit to this miniaturization is a mechanical resonator
based on a single molecule. Such a resonator should not only be able to push
the limits of the measurements sensitivities, but can also probe decrease of the
quality factor values with size that has so far been attributed to the increase of
the surface-to-volume ratios in these resonators. Carbon nanotubes (CNTs), thin
tubes of graphene, are light, stiff, strong, and electrically active, which makes them
a perfect candidate for a such a NEMS structure.

By employing a capacitive actuation and detection technique, we investigate
the performance of a resonator based on a doubly-clamped, suspended CNT in a
transistor geometry. We excite vibrations by applying an AC driving voltage to the
gate electrode, and we detect them by measuring the current through the CNT

device. Controlling the CNT’s tension, by applying a downward DC force with



a DC voltage on the gate electrodes, enables us to tune the resonant frequency,
resulting in the first tunable and self-detecting carbon nanotube resonator.

This setup also allows us to probe the loss mechanisms in these small structures.
We systematically study correlation of the quality factor with each of the device
characteristics, including electrical resistance, fabrication geometry, and resonant
mode harmonic number. We also study dependence of the quality factor on the
experimental knobs, such as pressure, temperature, DC gate voltage, and AC
driving voltage. We find that the quality factors in CNTs continue the trend
previously established by NEMS, and that several dissipation mechanisms must
be responsible for losses in this system. We identify coupling to the environment,

the thermoelastic effect, and surface-related losses as the three key mechanisms.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Micro- and nanoelectromechanical devices have been the subject of extensive re-
search for a number of years and have generated much excitement as their use in
commercial applications has increased. An electromechanical device is basically
a mechanical element (a beam, a cantilever, etc.) that is controlled by a micro-
electronic circuit. Microelectromechanical systems (MEMS) are currently used
to make such diverse systems as electric current or light flow regulators (Ekinci
and Roukes| |2005), microscale mirrors arrays (Craighead, 2000)), accelerometers in
crash airbags systems, RF electronic components, and sensors.
Nanoelectromechanical systems (NEMS) are the natural successor to MEMS
as the size of the devices is scaled down to the submicron domain. They also hold
promise for a number of scientific and technological applications. In particular,
NEMS have been proposed for use in ultrasensitive mass detection (Sidles et al.,
1995, Roukes, 2001)), RF signal processing (Nguyen, 1999, Nguyen et al., 1999)),
and as a model system for exploring quantum phenomena in macroscopic systems
(Chol, 2003| LaHaye et al., [2004). Improving sensitivity for these applications re-
quires decreasing the size, or, more importantly, the active mass of the resonator,
increasing its vibration frequency, and decreasing the line-width of the resonance.
Perhaps the ultimate material for these applications is a carbon nanotube (CNT).
CNTs are the stiffest material known, have low density and ultrasmall cross sec-
tions, and can be defect-free. In this thesis we will describe the fabrication and

operation of the first NEMS device based on a carbon nanotube.



Due to their remarkable electrical, mechanical, and electro-mechanical proper-
ties, CNTs have been a subject of intensive research since their discovery in 1991
(Ijimay, [1991). In this chapter we give a brief introduction to CNTs’ structure (sec-
tion and their electrical (section and mechanical (section properties.
We conclude the chapter with a section on the previous work done using CNTs as

mechanical resonators (section [1.5]).

1.2 Carbon nanotube structure

Carbon nanotubes are thin, hollow cylinders of covalently bonded carbon atoms.
They can come in two different flavors: single-walled carbon nanotubes (SWNTs)
and multiwalled carbon nanotubes (MWNTSs), which consist of concentric SWNT's
(or shells) stacked together. SWNTs are typically 1 — 2nm in diameter and several
pum in length, but SWNTSs up to mm long have been grown (Huang et al., 2003al).
MWNTs typically have diameters in the range of 5—50nm and are typically several
tens of um in length. CNTs are created by either catalytical (Kong et al., [1998)),
arc-discharge (ljima, 1991) or laser-ablation (Guo et al., 1995) methods. The work
in this thesis was done on only individual single- or few-walled CNT's created by
catalytic methods.

The carbon atoms in the walls of a nanotube (NT) are arranged in a honey-
comb lattice just as in a single sheet of graphene. In fact, a CNT can be thought
of as a single rolled graphene sheet (See Fig. [1.1a). The properties of a CNT then
derive from the properties of graphene. Depending on the “rolling” angle with
respect to the lattice, the relative arrangement of the atoms in the walls of the
CNT with respect to the CNT axis is different. The angle between the orientation

of the lattice and the NT’s axis is known as the “chirality” of the CNT. Fig.



Figure 1.1: Structure of CNTs. Adopted from [Minot| (2004). (a) Forming a

CNT by wrapping a graphene sheet. The shaded area shows the part of the sheet
to be wrapped and the black arrow identifies the direction of wrapping. The angle
¢ between the direction of wrapping and the lattice is called the “chiral” angle.
(b) An “armchair” CNT (¢ = 30°). (c) A “zigzag” CNT (¢ = 0°). (d) A “chiral”

CNT ( ¢ is arbitrary).



[I.Ip,c,d show examples of CNTs with different chiralities.

1.3 Electrical properties of carbon nanotubes

Carbon nanotubes inherit their remarkable electrical properties from the unique
electronic band structure of graphene (Fig. ) Depending on its chirality, the
nanotube can be either a metal, a semiconductor (Tans et al.| [1998)), or a small-
band gap semiconductor (Zhou et al., [2000).

The cylindrical structure of a CN'T imposes periodic boundary conditions on
the electron wave function around the NT’s waist, and transport in a SWNT occurs
only along the axis of the tube, making a CNT a 1D conductor. The conductance
G of a 1D channel is given by the Landauer-Buttiker model (for review see [Datta
(1995)).

oo (2)sr oy
where T; denotes the transmission probability through the i-th channel, and e*/h
is the so-called quantum of conductance. In nanotubes there are four degenerate
1D channels: two due to spin degeneracy, and two due to the degeneracy arising

from clockwise/counter-clockwise “handedness” of the electron wave function (see

Fig. [[.2d). Thus, the theoretical low-bias conductance of a CNT with perfect

e .

Conductances approaching this value have been measured experimentally in

transmission is

high-quality metallic tubes with lengths of 200nm (Kong et al. 2001, [Liang et al.,
2001) and in semiconducting tubes in the “on” state (Javey et al.l 2003, Yaish
et al., 2004). For such tubes, the conductance through the tube is essentially

ballistic. For longer tubes, the main origin of resistivity at low biases is believed to



(a)

conduction | g

valence

(b) [0- o] (@

Fermi

(C) g - .. band

Semiconducting
nanotube

Figure 1.2: Electronic structure of CNTs. Adopted from
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a semiconducting CNT (c) the lines miss the Fermi points. (d) 4-fold degeneracy

of a NT: two states due to spin and two states due to the “handedness” of the

wavefunction.



be due to scattering by acoustic phonons (Kane et al., [1998) with experimentally
measured mean free paths at room temperature of around a pum.

Semiconducting tubes have a band gap E, = 0.7eV/D[nm], where D is the
CNT diameter (Dresselhaus et al. [2001)), separating the valence and conduction
bands. Small-band semiconducting tubes have gaps on the order < 100meV that
originate due to perturbations such as twist, curvature, or local strain in an oth-
erwise metallic tube (Heyd et al., (1997, Yang et al., |1999, [Zhou et al., |2000).

An electrostatic field can couple to the potential of the tube and shift its Fermi
energy from the valence band, into the gap, and further into the conduction band,
modifying the CNT conductance (Tans et all |1998). This field-effect transistor
(FET) behavior is useful for circuit-type applications and for sensors. An example
of a CNT in the transistor geometry is illustrated in Fig. [[.3h. There are three
different regimes of operation. For gate voltages less than 0V the Fermi energy
is in the valence band and the transport is due to the holes (“p-regime”). When
there are 0—5V on the gate, the Fermi energy is in the band gap and the transport
through the nanotube is “oft”. For gate voltages larger than 4V the Fermi energy
is in the conduction band and the transport is due to electrons (“n-regime”). The
metal contacts screen the effect of the gate for the contacted part of the nanotube.
As a result the ends of the CNT are “pinned” at a certain doping defined by the
difference between the work functions of the CNT and the contacting metal(Javey
et al| [2003). The gate voltage then modifies the Fermi energy for the middle
section of the tube. The underlying oxide and various adsorbates can also affect
the doping of a CNT. Due to these effects, at zero gate voltage the nanotube is in

the “p-regime” for a typical device.
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Figure 1.3: Carbon Nanotube FET. Adopted from Minot, (2004). (a) A

schematic of a CNT FET. (b) Conductance through the transistor as a func-
tion of the gate voltage. For negative voltages the CNT is in the “p” regime, for
gate voltages between 0 and 5V the CNT is in the “off” state, and for larger gate
voltages the CNT is in the “n” regime. (c) Band diagram of “p”, “off”, and “n”

regimes of operation.



1.4 Mechanical properties of carbon nanotubes

CNTs owe their mechanical properties to the strength of the sp? hybridized C-C
bond. The two most important parameters characterizing the mechanical proper-

ties of a material are the elastic modulus £
o=¢€E (1.3)

that describes the slope of the stress (o) vs. strain (€) curve, and the tensile strength
(0s) which describes the maximum stress that the material can endure. If further
stress is applied the material either fractures or undergoes irreversible plastic de-
formation.

Theoretical calculations for the elastic modulus and the tensile strength of
a CNT predicted values ranging from 0.5TPa to 5TPa for the elastic modulus
(Overney et al., |1993] Yakobson et al.l 1996, [Lul, 1997, |Yao and Lordi, 1999, Her-
nandez et al., 1999, Zhou et al., [2000) and 10GPa to 40GPa for the tensile strength
(Yakobson, |1997)).

Experimentally, neither parameter is easy to measure due to the small size of
CNTs. Two techniques, however, have proved useful in measuring these prop-
erties: Atomic Force Microscopy (AFM) and Electron Microscopy. Early work
concentrated mostly on the properties of MWNT and CNT bundles. [Treacy et al.
(1996)) used Transmission Electron Microscopy (TEM) to image thermal vibrations
of MWNTs at high temperature and then extracted the elastic modulus by fitting
the shape of the resonance (Fig. [I.4h). They found values ranging from 0.4 to
4.15TPa. This work was later continued by several other groups using TEM with
MWNTs (Krishnan et al., [1998), with reported values around 1.4TPa, and Scan-

ning Electron Microscopy (SEM) with individual SWNTs at room temperature



(f)

AFM éantilever

suspended tube

Figure 1.4: Measuring mechanical properties of CNTs. (a) Thermal vibrations

of MWNT in a TEM (Treacy et al. 1996). (b) A CNT pulled by two AFM tips

inside an SEM (Yu et al., 2000)). (c) A contacted CNT stretched laterally by an

AFM tip (Kim et al, 2002). (d) Thermal vibrations of a SWNT in an SEM (Babic

, 2003). (e) A metallic paddle defined on top of a CNT to measure its shear

modulus (Williams et al., 2003)). (f) A schematic of a suspended CNT stretched

by an AFM tip (Minot et al., 2003]).
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(Babic et all, [2003)(Fig. [1.4d), with reported range of values of 18GPa to 2.5TPa.
Electrically excited CN'T vibrations have also been used to measure elastic modu-
lus (Poncharal et al., 1999, |Gao et al., 2000), with extracted elastic modulus values
of approximately 1TPa. This work will be discussed in detail in the next section.

Wong et al.| (1997) used an AFM cantilever to bend singly clamped MWNTs
and directly measure their elasticity and strength. They found values of elastic
modulus of around 1.3TPa. Salvetat et al|(1999) and later Walters et al.| (1999),
Kim et al| (2002), and Minot et al.| (2003) have used similar methods to study
the elastic properties of doubly clamped ropes of SWNT and individual doubly
clamped SWNTs (see Figll.de,f). [Salvetat et al| (1999) reported values for the
elastic modulus around 1TPa for arc-discharge grown tubes, and values an order
of magnitude or more lower for tubes grown by catalytic methods. Later mea-
surements produced similar results for the elastic modulus of around 1TPa and in
some cases also determined an upper bound on the tensile strength (Walters et al.,
1999) of around 40GPa. [Yu et al. (2000) studied the elastic properties of SWNT
ropes by attaching them to two AFM cantilevers inside of an SEM system (Fig
[1.4p). The measurements yielded elastic modulus values around 1TPa and tensile
strength of ~ 40GPa.

Williams et al.| (2003) have measured the shear modulus of MWNTs by fabri-
cating a metallic paddle on top of the nanotube to which a twisting force could be
applied using an AFM cantilever (see Fig. [I.4¢). The measured values of 400GPa
were in rough agreement with theory.

As the electronic properties of CNTs are highly sensitive to the geometric con-
figuration of the atoms, it is also possible to study the effect of mechanical modifi-

cations on the electronic properties of the CNT. Theoretically it has been predicted
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(Heyd et al., (1997, [Yang et al., 1999, 2000) that it is possible to modify the band
gap of a semiconducting CN'T and induce a band gap in certain metallic tubes by
applying strain to NTs. Indeed, it has been experimentally shown that the band
gap F, of a semiconducting nanotube can be tuned by applying a small mechanical

strain o (Minot et al., [2003)) as

dE, meV
—° ~ 4100
do %

cos 3¢ (1.4)

where ¢ is the chiral angle and the sign up front depends on the exact wrapping

vectors.

1.5 Previous work on CNT resonators

Early work on CNT resonators was done on MWNTSs in an electron microscopy
system for the purpose of measuring the elastic modulus of CNTs. [Poncharal et al.
(1999), soon followed by |Gao et al.| (2000), have grown MWNTSs on a holder by
either pyrolysis (typically 6um long and 10nm in diameter) (Poncharal et al., [1999)
or arc-discharge (Gao et al., 2000) (typically 30 — 60xm long and 13 — 20nm in di-
ameter), and placed them in an oscillating electric field created by applying an AC
voltage to a nearby electrode (Fig. ) A DC voltage difference was also applied
to induce charge on the CNT. In an AC electric field, a charged nanotube expe-
riences an oscillating electric force which sets it into motion when the frequency
of the AC field matches the resonance frequency of the nanotube. Detection is
implemented using a transmission electron microscope (TEM) (Poncharal et al.)
1999)) or a scanning electron microscope (SEM) (Gao et al) 2000) and directly

imaging the nanotube’s movement (Figs,c). For a singly-clamped cantilever
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Figure 1.5: Previous work on CNT Resonators. (a) Experimental schematic for
experiments by Poncharal and Gao. (b),(c) Images of first and second harmon-
ics of vibrating CNT cantilevers. (d) Experimental schematic for experiment by
Purcell et al. (e) Emitted CNT current as a function of driving frequency. A
drop in current on resonance can be observed. The peak is non-Lorentzian due to
nonlinear detection. (f) Resonance frequency as a function of applied DC voltage

V4. The resonance frequency tunes linearly with the applied gate voltage.
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the resonance frequency is given by (for derivation see Chapter |2)

Vn 87TL2\/D2+D2\/7 (1.5)
where L is the length of the CNT, p is the CNT mass density and D, D; are the
outer and inner diameters, respectively. From the measured resonance frequencies
of 1IMHz, the elastic modulus £ could be extracted and was found to be in the
range of 0.2 — 2TPa. In both experiments, the extracted quality factors were on
the order of 100 to 200, which was attributed mainly to the abundance of defects
in pyrolysis and arc-discharge grown tubes.

Later, Purcell et al.| (2002) grew MWNTs (typically 10 — 25nm in radius and
10 — 40pum long) by chemical vapor deposition (CVD) (Kong et al., [1998), which
typically produces close to defect-free tubes. Actuation was done electrostatically.
A nanotube, grown on a metallic tip (Fig. ), was placed between two electrodes.
A DC voltage applied to the holder created a DC electric field along the CN'T, which
both doped the CNT with charge and applied a DC electric force on it. An AC
voltage applied to the two electrodes created an AC electric field used for actuation
of the resonance. The detection of the resonance was performed using the CNT
as a field emitter. The DC voltage, V4, applied to the CNT’s holder was adjusted
until the nanotube started emitting electrons, which were then accelerated to the
detection screen. If a particular nanotube was moving, the pattern on the screen
changed and the emission current dropped. Increasing the DC voltage beyond the
amount necessary for detection increased the electric force along the CNT, thus
increasing its tension. From simple arguments, it can be shown that the tension
in the CNT T is given by
T =~*V} (1.6)

where ~ is a constant defined by the geometrical factors and the electrostatic
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environment. Being able to change a N'T’s tension allowed researchers to study
the dependence of the resonance frequency on tension. For a tensed string it is
expected that the frequency changes as the square root of tension. Thus, the

resonance frequencies in this system were expected to follow (Purcell et al.; 2002)):

n |[E ny |1
= 51—+ =—1/—V. 1.7
= o\, T 2L\/; A (17)

and thus to change linearly with applied gate voltage. Such linear dependence was
observed for all the measured resonances (see Fig.|1.5(f). The measured frequencies
were on the order of 1MHz, similar to the previous experiments. Since the detection
scheme of measuring the emission current was highly non-linear in the amplitude
of vibration, the shape of the resonance (Fig. [L.5d) did not look Lorentzian as
expected (see Section . Nonetheless, the effective quality factor (the line-width
divided by the center frequency) for the resonances was measured, and was found
to be roughly 2400.

Despite of the success of the detection methods described above, they still have
several disadvantages. Firstly, using a TEM or SEM, or applying several hundred
volts to detect the resonance is unrealistic for any industrial application. Secondly,
as will be discussed in Appendix [B] the electron beam used for imaging in TEM
and SEM interacts with the CNT and even damages it both structurally and elec-
trically. The detection scheme using the microscopes relies on visually determining
the amplitude of vibration and is thus not very convenient and useful for any in-
depth study of resonance properties, as the measurement is not automated. The
field-emitter detection scheme has the disadvantage of being extremely non-linear
and thus losing all of the information about the linear properties of the resonance.
Lastly, all of these techniques are limited in their sensitivities to tens of nm vibra-

tion amplitudes by the resolution of the imaging beam. Such poor sensitivity may



15

push the operation of these resonators into the non-linear regime.

A fully electrically controlled detection/actuation method is highly advanta-
geous for any possible future applications and/or research. In order to implement
this method, we have decided to use the nanotube itself as a detector, thus re-
quiring it to have at least two electrical contacts. This requirement restricts the

mechanical structure to the doubly clamped geometry.

1.6 Summary and outline of thesis

Carbon nanotubes are a novel material that exhibits exciting electronic and me-
chanical properties. Their small size, high stiffness, great flexibility, and transistor
properties make them ideal for use as a nano-electro-mechanical system (NEMS).
In this thesis we will describe the first measurement of a NEMS device based on
an individual SWNT. Chapter |2 gives an introduction to NEMS and to the theory
of vibrating systems. Chapter |3 describes the process of making devices and the
measurement setup used in this thesis. Chapter [4] describes the first measurements
of a CNT resonator and presents a model for the frequency dependence on the pa-
rameters of the setup. Chapter |5 describes a quantitative analysis of the measured
signals and discusses the sensitivities of the measurements and possible sources of
noise. Lastly, chapter [0] discuses the possible sources of dissipation in the CNT

resonator system and presents its dependence on temperature.



CHAPTER 2

OVERVIEW OF NANOELECTROMECHANICAL SYSTEMS
2.1 Introduction

In this chapter we will present a basic introduction to micro- and nanoelectro-
mechanical systems (MEMS and NEMS). In this short review we will follow closely
two main review articles: Ekinci and Roukes (2005)) and |[Roukes (2000)).

A typical electromechanical device can be described as a system where electri-
cally controlled signals provide mechanical stimuli to a resonator, whose mechanical
motion (typically the the displacement of the element) is then transduced back into
electrical signals. Additional control electrical signals can be applied to change the
two main parameters of the resonator: its resonant frequency wg /27 and quality
factor (). There are various types of geometries that are used in NEMS. Figure
shows some of the representative systems. In general, the two types of mechanical
motions that are mostly used are flexural and torsional vibrations. An example
of a flexural resonator is a doubly clamped beam, and an example of a torsional
oscillator is a paddle. In this thesis we only consider flexural resonators, mainly
doubly clamped beam and cantilever geometries.

In the linear regime of operation (when the displacement of the vibrating ele-
ment is small) the mechanical structure can be approximated by a simple harmonic
oscillator (section and the resonant frequencies of these mechanical structures
can be calculated using the methods of continuum mechanics. It has been shown
by molecular dynamics simulation (Broughton et al., 1997, Phillips, 2001 that
such calculations continue to be valid as the sizes of the structures shrink down to

several tens of lattice constants in cross section. In section we present a clas-

16
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Flexural vibration
(a) I
: N

Torsional vibration

(d)

Pt d P

Figure 2.1: Examples of NEMS. (a), (b), (c) Examples of NEMS devices uti-

lizing flexural vibration. (a) A cantilever (Ilic et al., 2004)). (b) Doubly clamped

beams (Cleland et al., 2001). (c) Suspended membrane (Zalalutdinov et al., 2003)).

(d) NEMS utilizing torsional vibration, a paddle (Sekaric et al., 2002)).
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sical calculation of the resonant frequency for a cantilever and a doubly clamped
beam. Above the critical displacement of the mechanical structure various types
of non-linearities in the restoring force of the system become increasingly impor-
tant. These non-linearities can be caused by the elongation of the beam, imperfect
clamping, or some kind of force gradient present in the system. This behavior
of mechanical resonators is very useful for certain applications (Greywall et al.,
1994 Turner et al.,|1998, (Carr et al., 2000, Erbe et al., 2000), such as memory and
signal processing. We will present a short introduction to a typical behavior of a
nonlinear oscillator whose restoring force contains a cubic term in section [2.4]

Experimentally, NEMS can operate at frequencies as large as 1GHz. Due to
their small sizes, inducing and detecting the motion of the vibrating element at
such high resonant frequencies becomes a challenge. A typical displacement sensi-
tivity required for NEMS technology is on the order of 3pm/ VvHz (Cleland et al.|
2002)) with the the onset of non-linearities at displacements on the order of nm.
Standard optical approaches used in micro electromechanical systems (MEMS)
such as optical interferometry (Wagner, |1990) and optical beam deflection (Bifano
et al., [1999) are not easily scalable to the nano-sized resonators as they are limited
by the diffraction of light. Electronic methods such as magnetic, magnetomotive,
electrostatic, capacitive, piezoelectric, and piezoresistive techniques are also very
hard to scale down as the effects of parasitic capacitance becomes increasingly im-
portant. In section [2.5] we describe several different detection methods that have
been successfully used with NEMS.

Typical NEMS operate with quality factors in the range of 10> — 10°. These
are values that are much higher than those typically available with electronic os-

cillators, but still inferior to MEMS. Ultrahigh quality factors are desirable as
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they decrease the minimum operating power of the device, increase its sensitiv-
ity to external driving, and increase the device selectivity in the spectral domain.
Such qualities are extremely useful in many applications such as filtering and sig-
nal processing. There are several factors that create losses in NEMS: air friction,
clamping losses, surface effects, internal electronic losses and electronic losses due
to external circuitry. The effect of these will be discussed in section [2.6]

High operating frequencies and high quality factors have made NEMS promising
for a variety of different applications. We will present a short discussion of such

applications in section [2.7]

2.2 Simple harmonic oscillator

The simplest one-degree-of-freedom oscillating system is a massless spring with a
spring constant k and a mass m attached to it. If z is the variable that describes

the position of the mass, the equation of motion for such a system is given by
mz(t) + kz(t) =0 (2.1)
The solution to this equation is
2(t) = 2o cos(wot + @) (2.2)

where wy = \/% is the resonant frequency of the oscillator, and zy and ¢ are
the amplitude and the phase of the motion, respectively, which are defined by the
initial conditions of the oscillator.

In a more realistic situation, a damping term and a driving force term are
present. The damping term in general should not depend on the displacement

(Marion and Thornton, |1995)) but rather on the velocity of the mass. For simplicity
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Figure 2.2: An amplitude and the phase of the SHO response as a function of
the driving frequency. The amplitude of the response reaches the maximum at the
resonance frequency fo = 50, while the off-resonance response is () times smaller.

At the same time the phase of the response goes through a 180° shift.
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we assume sinusoidal driving. We thus modify Eq. as follows:
mZz(t) + bz(t) + kz(t) = Fy cos(wt) (2.3)

Solving for steady solution of the form presented in Eq. we get that

F()/m
\/(w(z) — w?)? + 4w?3?

) (2.5)

z(t) =

cos(wt — @) (2.4)

2

2w

¢ = arctan(

where

B =b/2m (2.6)

To describe the degree of damping in the system we can define the quality

factor in terms of the the energy loss in the system:

Total E
Q=2n ota- Bnersy (2.8)
Energy lost during one period

We can show that for small damping the quality factor is given by @ = wy/20 or
alternatively by Q) = wo/Aw, where Aw is the full width at half maximum.
Figure shows the frequency dependence of the amplitude and the phase
of the response. We see that the amplitude is maximum at the free oscillator
resonant frequency, reaching the value which is ) times higher than the non-
resonant response. The frequency dependence is in the form of a Lorentzian and
the width at half maximum is given by the product of the quality factor and the
center frequency as described above. The phase of the signal goes through a 180°
phase shift, with the response being 7/2 out of phase with the drive at the center

frequency.
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2.3 Beam mechanics

We can now extend the theory above to the case of a more realistic resonant
structure, such as a doubly clamped beam or a cantilever. First, we solve the
equation of equilibrium for a beam subjected to a constant downwards force, and
then we proceed to solving the dynamical properties of the vibrating beam.

There are two standard way to set up a beam’s equation of equilibrium. The
first is the technique of balancing all the forces and torques acting on a beam’s
subsection (Landau and Lifschitz, 1987, [Shabanal (1997)). Appendixcontains the
detailed derivation of the equilibrium equation using this method. Alternatively
we can find the configuration of a beam by energy considerations.

Consider a doubly clamped beam represented schematically in Figure 2.3 Let
the coordinate system be set such that z is along the beam, and y, z are per-
pendicular to it. For simplicity we can assume that the cross-section of the beam
is symmetric and all the forces are applied in the z-z plane. The problem then
reduces to two dimensions. If E' is the elastic modulus of the material and 7" is the
tension in the beam, the elastic potential energy of the beam is given by (Landau

and Lifschitz, 1987)

1 (L EA (L
U= /0 (EJZ”2 + (To + 57 /0 z’Qda:> z’2> dx (2.9)

where T is the residual tension in the beam, A is the beam’s cross-sectional area,
I is its moment of inertia, and the prime denotes differentiation with respect to z.
We associate the first term with the flexural energy of the beam and the second
term with the elastic energy in the beam due to the built-up tension. For small
displacements, we can approximate the curvature of the beam, x, with 2” and the
1,

strain in the beam, ¢, with 52". The product E1, referred to as flexural rigidity,
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Figure 2.3: A schematic of a doubly clamped beam made out of material with
elastic modulus E. The beam, with dimensions ¢ X w X L, has a cross-sectional
area A, and a moment of inertia I with respect to the z-axis. The beam is subject

to a load K , and tension T.
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denotes the force necessary to bend a beam by a unit of curvature, whereas the
product FA, referred to as extensional rigidity, denotes the stress necessary to
produce a unit strain. In the presence of a uniform downward force K, the total

energy of the beam including the work done by the downward force simplifies to
L
sz/ (EI K>+ Ty + EAE + K2)de (2.10)
0
Minimizing this energy leads to the following equilibrium equation

EI K" —Tyz" —EA (e2)" — K =0 (2.11)

EA L 2

or in terms of the total tension T'= Ty + 57 [y" 2" and displacements

EI:" -T2 — K =0 (2.12)

We will now solve this equation in two different limits.

2.3.1 Bending limit

In the bending limit the tension is much smaller than the flexural rigidity 7" <
ET/L? so that the second term of the equations can be neglected.

In order to calculate the resonant frequency of the system, we replace the
external force K with pz. Here p is the linear mass density of the beam. This

leads to a wave equation

i = EIZ" (2.13)
To solve this differential equation, we plug in a standard solution z = zo(z) cos(wt+
¢). Equation then reduces to

2y = k2 (2.14)

=2 2.15
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A general solution to this equation is:
2o = Acos(kx) + Bsin(kx) 4+ C cosh(kz) + D sinh(kz) (2.16)

where we determine the constants A, B, C and D from the boundary conditions.

We consider two cases: first, a cantilever geometry, in which one end of the
beam is free and the other is firmly clamped; and second, the doubly clamped
beam geometry in which both ends of the beam are firmly clamped.

In the first case the cantilever geometry requires that at © = 0, we have z = 0
and 2/ = 0 and at x = L, we have z” = 0 and 2" = 0. From that, we determine
that

zo = A{[cos(kL) + cosh(kL)][cos(kz) — cosh(kx)] — (2.17)

[sin(kL) — sinh(kL)][sin(kx) + sinh(kz)|}
The resonant frequencies are given by
8.\ [EI
= | = — 2.1
w < 7 . (2.18)
where (3, are given by 3, = k, L and are determined by the equation
cos(k,L) cosh(k,L) = —1 (2.19)

For the lowest mode of oscillation 5y = 1.88.
In the second case, the doubly clamped condition requires that at x = 0 and

at x = L we have that both z = 0 and 2’ = 0. Consequently, we determine that

2o = A{[sin(kL) — sinh(kL)][cos(kx) — cosh(kx)]) — (2.20)

[cos(kL) — cosh(kL)][sin(kx) — sinh(kz)|}

and that the resonant frequency is

w = (55)2 £l (2.21)
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where (3, are again given by (3, = k,L but now are determined by the equation
cos(k, L) cosh(k,L) =1 (2.22)

For the lowest mode of oscillation, Gy = 4.75.

2.3.2 Tension limit

In the tension limit the tension is large compared to the flexural rigidity 7' >

EI/L?. In this case, Eq. reduces to
T:"+ K =0 (2.23)
Replacing K with pZ, as in the previous section, leads to a wave equation
pz="Tz7" (2.24)

the solution to this equation in a case of a doubly clamped beam is a standard
wave defined by:

z = zg cos(kx) cos(wt + @) (2.25)

where the resonant frequency w is given by
w=—4/— (2.26)

As expected, we recover the simple “guitar string” vibrational modes.

2.3.3 Joining the two limits

In a realistic case, Eq. has to be solved self-consistently accounting for both
the flexural rigidity, E'I, and the tension, 7', which is found from the relation

EA (L
T=Ty+ =~ | 2z (2.27)
2L Jo
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where Tj is the residual tension. Performing the calculation (Sapmaz et al., 2003)

leads to second order corrections to the solutions found above for the two limits

— 224 JEI 1 2
w=24 [T L0987 /L EI/L*>T .
w=1 L+ 5/ EI/L*<T

2.4 Duffing oscillator

The discussion in the previous section was limited to the case of a linear system.
However, in a realistic system various type of nonlinearities are present. In the case
of doubly clamped beams, a nonlinear restoration force comes from the elongation
of the beam as it vibrates. Accounting for the tension in the beam due to strain,
we get the following equation of motion, also known as a Duffing oscillator (Nayfeh

and Mook, 1979):

Z(t) + ug;z'(t) +wiz(t) +e2® = f:s cos(wt) (2.29)

where for the case of doubly clamped beam wy = 25—'24. /% as defined in the previous

section, and ¢ = % (2%)4 (Postma et al., [2005))

Figure shows a typical response of a Duffing oscillator as the amplitude of
vibration is increased. For small amplitudes, the response is Lorentzian, but above
the critical amplitude a,. the peak is pulled over toward higher frequencies. At this
point, there are three solutions to Eq.[2.29 two stable solutions and one unstable.
The response then develops a hysteretic switching as the frequency is swept up

and down (Figure [2.4b) The onset of nonlinearity due to elongation of the beam

is expected at (Nayfeh and Mook, [1979))

(2.30)
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Figure 2.4: Nonlinear resonator response. (a) Resonator response vs driving fre-
quency for increasing vibration amplitude. (b) Example of hysteresis for nonlinear

resonator.



29

which for the case of the nonlinearity presented above reduces to (Postma et al.|

2005)

L2 1pv3
O EQ

Qe = W

(2.31)

For a circular beam with diameter d, moment of inertia I = wd*/64, and cross-

sectional area A = wd?/4, this converts to

d2
e = \%\/; (2.32)

2.5 NEMS actuation and detection techniques

To study realistic resonating systems we need a way to induce and detect their
mechanical motion. Below we describe several different methods of actuating and

detecting the vibrations.

2.5.1 Actuation

Piezo

In the simplest scenario, the mechanical structure can be placed on a vibrating
substrate to induce oscillations. A commercially available piezo is typically used
for this purpose (Li and Evoyl 2005). This is a very simple and readily available
technique; however, there are several complications that arise with it. The fre-
quency response of the piezo is very non-uniform even in the region of interest for
MEMS and attenuates fast at higher frequencies (100MHz) making it very hard
to quantify the force applied to the resonator. The voltages required to drive
the piezo are on the order of volts, making electrical detection difficult, as the

capacitive leakage currents interfere with the detection signal.
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Figure 2.5: (a) Magnetomotive setup (Ekinci and Roukes, 2005). (b) Optical

actuation setup (llic et al., 2005). (c) Optical interferometric setup (Ekinci and

Roukes, 2005)).
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Magnetic - Lorentz force

In the magnetic actuation scheme, a conducting mechanical structure (typically a
doubly clamped beam in a conducting loop) is placed in the presence of a static
magnetic field, B, perpendicular to the plane of vibration (see Fig. [2.5a) (Cleland
and Roukes| 1996). Passing an AC current, I, through the beam induced an AC

Lorentz force, Florentz, that drives the beam.
FLorentz =IBL (233)

where L is the length of the beam.

Electrostatic

In the electrostatic actuation technique, a conducting mechanical structure is
placed in a presence of an AC electric field created by applying an AC voltage, V/,
to a nearby electrode (Carr and Craighead, |1997). The electrostatic force on the

mechanical structure is then given by
1 2
Felectrostatic - §V C (234)

where C” is the spatial derivative of the beam-electrode capacitance.

Optical

Recently (Ilic et al., [2005)) an optical actuation scheme was realized with NEMS. In
such a scheme, an AC-modulated laser is focused near the resonating structure (see
Fig. [2.5b). The AC laser power is converted into heat, producing an oscillatory
stress field in the material and causing the resonant structure to vibrate. The

advantage of such an excitation scheme is that it doesn’t require any electrical
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contacts to the resonating structure, while the disadvantage is that the effectiveness
of the drive depends directly on the proximity of the laser spot to the structure
and the thermal conductivity of the material. As the sizes of resonators shrink

down, such an excitation scheme is harder and harder to realize.

2.5.2 Detection

Imaging

The simplest qualitative detection scheme can be achieved by placing a vibrating
structure into a microscope, for example a scanning electron microscope (SEM) or
a transmission electron microscope (TEM), and directly observing the vibrations
of the structure. Despite the simplicity of this technique, it is hard to extract quan-
titative information about the vibrations of the resonator as the detector should
be capable of taking images faster then the resonance frequency of the studied
structure, which for NEMS is in the MHz range. Moreover, this is a very invasive
measurement, as will be discussed in Appendix [Bl And finally, this measurement
technique does not allow one to vary any parameters in the environment of the

resonator such as air pressure, presence of adsorbates, or temperature.

Optical

In the optical interferometry detection scheme (see Fig. 2.5¢) a tightly focused
laser beam reflects off the structure and interferes with a reference beam, typically
the part of the beam that goes through the vibrating structure and reflects off the
substrate. However, extending these techniques into the domain of nanoscale res-
onators proves to be challenging, due to their small cross section, but was realized

in the past (Carr et al.,|1999). This technique is typically used in conjunction with
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electrostatic actuation.

Magnetomotive

The magnetomotive detection technique is normally used with the magnetic ac-
tuation technique, for doubly clamped beam structures. As the beam vibrates,
the flux enclosed by the conducting loop varies, creating an electromotive force
(EMF) across the beam. This EMF can be detected by an amplifier connected to
the circuit (Cleland and Roukes, (1996). Even though this is currently the most
widely used technique for NEMS, it has significant drawbacks for small resonators,
whose resistances are typically much higher than the impedance of the measuring
circuit, making it difficult to detect high frequency signals. Even if the impedance
of the resonator is matched to the external circuit, the the dissipative force created
due to this detection technique dominates the drive for small resonators (Schwab

2002), as the loss is inversely proportional to the mass of the resonator (see section

23).

Capacitive

In the capacitive detection scheme, changes in the capacitance between a vibrating
mechanical structure and a nearby electrode are measured (Nguyen, |[1998)). Since in
nanoscale-sized resonators these capacitances are usually on the order of 10718F,
the detection is complicated by the presence of parasitic capacitances that are
several orders of magnitude larger. This challenge is usually overcome by the use
of balanced bridge techniques or by placing an amplifier, such as, for example, a

single electron transistor (LaHaye et al.,|2004), in close proximity to the resonator.
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Piezoelectric and piezoresistive

In a piezoelectric detection scheme, a mechanical structure covered with the piezo-
electric medium creates AC polarization electric fields at the points of maximum
strain. These electric fields can be detected by placing a gate of a field effect tran-
sistor (Beck et al., [1998) or a single electron transistor (Knobel and Cleland, 2003)
on top of the piezoelectric medium at these points.

The piezoresistive detection scheme was realized only recently for NEMS (Bar-
gatin et al., 2005). In such a detection scheme, the strain-dependent resistance of
a mechanical element made out of a piezoresistive material such as doped Si or
AlGaAs, is measured.

The large resistances of these small structures complicate these methods. This
complication is inherent to all of the detection methods that measure charge
through small structures. At high resonance frequencies, such high resistances
lead to a frequency-dependent signal attenuation due to a high RC time constant.
There are two different methods to work around this problem. One is to transform
the impedance of the measured device to 502 at the frequency of interest (Ha-
gen,, 1996| |Schoelkopf et al., [1998)). A drawback is that the measurement circuit
has to be rebuilt for each individual device. Another method is to use some non-
linear component in the circuit (such as the piezoresistor or an SET) to perform
downmixing at a much lower frequency, where the signal attenuation is not large

(Hagen), 1996, Knobel and Cleland, 2003, |Bargatin et al., 2005]).

2.6 Losses

The degree of loss in a resonator is characterized by the quality factor @) given

by Eq.[2.8/ The inverse of the quality factor describes the relative energy loss per
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cycle and is additive for different processes. The energy losses in NEMS can be
divided into two categories. The first are intrinsic losses that come due to some
imperfections or interactions within the structure or from fundamental processes
within the lattice such as defects, phonon-phonon interactions, electron-phonon
interactions, etc. They are sometimes referred to as the “internal friction”. The
second are the extrinsic losses that arise due to interactions with the surrounding
media such as air friction, clamping, measurement scheme, etc. In this section
we describe some of these loss mechanisms in greater detail; a summary of the

dissipation mechanisms is provided in table [2.1]

2.6.1 Intrinsic losses

The intrinsic losses can be divided into two categories: dissipation due to funda-
mental processes in the lattice that occur even in a perfect crystal, and dissipa-
tion from imperfections of the lattice, such as defects and impurities. The main
fundamental processes are phonon-phonon interactions and electron-phonon inter-
actions. These dissipation mechanisms set the absolute limit to the performance
of a mechanical resonator. Additional dissipation comes from imperfections of the
material both in bulk (impurities, dopants, and electron traps) and on the sur-
face (dangling bonds, adsorbates, etc). Below we describe in detail some of these
processes. For a more thorough review see Nowick and Berry| (1972)) and Braginsky
et al.| (1985).

Many of these processes can be treated in the framework of a standard anelastic
solid (Nowick and Berry, [1972)). The basic idea behind this model is that mechan-
ical vibration of a solid takes the system out of equilibrium. For an anelastic solid,

such a configuration is not stable, and the system relaxes to equilibrium through
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Figure 2.6: Various dissipation mechanisms. (a) Thermoelastic effect. (b) Qual-

ity factor dependence on the size of the resonator illustrating the importance of

surface effects (Ekinci and Roukes| 2005)). (c) Calculated quality factor for NEMS

as a function of gas pressure (Bhiladvala and Wangj, |2004). (d) Dissipation due

to clamping. Dependence of the losses on the thickness of the supporting base

(Photiadis and Judgel 2005). (e) A double layer cantilever structure. (f) The

equivalent electronic circuit for a resonator (Cleland and Roukes, 1999).
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various mechanisms with a finite relaxation time 7. We can modify the Hooke’s

stress-strain relation to include the mechanical relaxation as (Cleland et al., 2002)

do de
R — 2.
o+ T 7 R <€+Todt> (2.35)

Here Ej is the relaxed elastic modulus. The relaxation mechanisms include every-
thing from interaction with point-defects to thermal relaxation. Such relaxation
leads to dissipation of energy from the mechanical mode whose functional form is

given by

O l=A (“”) (2.36)

1+ (wr)?
where w is the mechanical vibration frequency and A is the mechanism-dependent
dissipation strength defined by the relaxed elastic modulus and the relaxation times

in the following fashion (Cleland et al., 2002)

_ Ey—Er

A = iy (2.37)

where Ey = ERT, /7. is the unrelaxed elastic modulus. The relaxation time, 7, is
also mechanism dependent and is defined by the relaxation times of the stress and

strain as

T =/ToTe (2.38)
Such dissipation has the form of a Lorentzian in frequency domain, and is often
referred to as a “Debye peak”.

In the case of the temperature activated process, the relaxation time is given

by the Arrhenius equation

T = Vo_leEO/kBT (2.39)

where 1 is the attempt frequency, and Ej is the activation energy. In this case

as the temperature is changed, 7 changes accordingly, producing the maximum
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dissipation at the temperature, T},, where 7 ~ w™!. Since at that temperature

Eo 1
In(wr) 17;]? =0 (2.40)
1%

by measuring T, for the several different frequencies, the activation energy can be

measured. The activation temperature Ty = Ey/kp is then given by the slope of

In(w) vs. 1/T,.

Phonon-phonon interactions

A realistic crystal lattice is always slightly anharmonic. The degree of anhar-
monicity in the lattice is typically described by the Gruneisen constant, ~y, that is
essentially the first nonlinear coefficient between the stress and strain in a solid.
This nonlinearity allows for the possibility of energy transfer between the normal
vibrational modes of the crystal or phonon-phonon scattering. For a mechanical
resonator, this means that an acoustical vibrational mode can dissipate energy
into the higher energy thermally populated vibrational modes. Calculating losses
for such a mechanism has been approached for two different limits of the phonon
mean free path compared to the wavelength of the acoustic mode.

The first case, the ballistic limit, occurs when the phonon mean free path, I7, is
comparable to the the acoustic wavelength or the dimension of the resonator, I ~
L; the thermal phonons then can be regarded as individual particles in a kinematic
picture. The driven resonant mode can be viewed as an acoustical phonon of
wavelength L. The losses to the resonator are due to individual scattering events
between the acoustical and thermal phonons (the so-called Landau-Rumer effect).
The losses in such a case are typically calculated numerically.

The second case, the diffusive limit, occurs when I < L. Here the acoustic

mode can be treated as perturbing the local distribution of the phonons, and losses
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come from thermal phonons relaxing to equilibrium, the so-called Akhizer effect.
The phonons are regarded as a viscous “thermal gas” for the acoustic mode. For
the theoretical and experimental discussion of this process see Braginsky et al.
(1985) and [Nowick and Berry| (1972)).

In the extreme diffusive limit, however, the phonons thermalize so quickly that
they can be considered as just creating a temperature field. In this limit, we can
approach the problem classically using thermodynamical arguments. The inter-
actions between the mechanical degree of freedom and the phonons are captured
in the thermal expansion coefficient, «, which can be related to the Gruneisen
constant (Lifshitz, 2002). This limit of phonon-phonon dissipation due is called

thermoelastic effect, we discuss it below in more detail.

Thermoelastic effect

The thermoelastic effect is one of the main sources of dissipation in small me-
chanical systems (Roszhart} 1990, [Yasumura et al., [2000). The theory was first
developed by Zener (Zener, 1948) and further developed for thin vibrating beams
by Lifshitz and Roukes (Lifshitz and Roukes, 2000). The idea behind thermoelastic
dissipation (TED) is that the local volume changes induced by mechanical vibra-
tion lead to a temperature gradient across the resonator, and to the heat flow from
the hot to the cold regions. The problem can be solved in the framework of a
standard model for an anelastic solid described above.

To derive the strength of the dissipation due to the thermoelastic effect we go
back to Eq. 2.37 We can identify the relaxed and unrelaxed elastic moduli with

the isothermal and adiabatic elastic moduli, respectively. Thus for a stress, o, and
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a strain, €, the moduli are given by:
(2.41)

where T and s are temperature and entropy, respectively.
Before calculating A, we note that Fg — Ey is small and that we can replace

the product of the moduli in the denominator by F3. Eq. then reduces to

_Ey—En _Jn-Jy _ -y (2.42)

A
Er Ju Jr

where Jyr = 1/Eyg is the compliance. We then proceed by calculating the
relaxed and unrelaxed compliances from thermodynamical principles.

Writing down the free energy equation in its differential form

dg = —sdT — edo (2.43)

o5\ _ (e
do ), —\orT Y
We also know that by definition
0s C,
() ¢ »

Using a property of partial derivatives and the equations above, we can derive that

0 EE-F e

And using Eq. we arrive at

we arrive at

« (2.44)

Oe
Ju = <30>s (2.47)
Oe oT Oe
- (%)ﬁ(%l(ml (245)
R A (2.49)

Co
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The dissipation strength is then given by

o*TE
A = 2.
! 2:50)

where we have replaced the heat capacity at constant stress, C,, by the heat

capacity at constant pressure, C. The overall value of loss is given by

4 o*’TE wT

The elastic modulus relaxation time, 7, is given by the time it takes for heat
to travel from the expanded to the contracted regions of the beam. In case of a

transverse acoustic wave (flexural vibration) it is given by

t*C
= 2.52
T= (2.52)
Here t is the thickness of the beam, and « is the heat conductance. For a longitu-

dinal wave, the relaxation time is defined by the wavelength of the wave, A\, rather

than the thickness of the beam, and is given by

T= (2/\7)02% (2.53)

Since only mechanical modes that produce volume changes are subject to TED,

the other modes such as pure torsional modes are lossless.

Electron-phonon interactions

For metallic resonators, the mechanical motion of the resonator results in ion
oscillation and creation of an oscillatory electrical field. The free electrons can
be viewed as a viscous gas that moves in this field and dissipates energy. The
dissipation of longitudinal sound waves in this case were theoretically calculated
to be (Braginsky et al., [1985)

8 Ermeow
Q= e

15 pue? (2.54)
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where Ef is the fermi energy, and e and m, are the electron charge and mass, o
is the electric conductivity, p is the density, and v is the velocity of longitudinal

sound wave.

Two-level systems

Internal defects such as contamination, impurities, and dangling bonds can also
contribute to losses in a mechanical oscillator. Such dissipation is often caused by
phonon capture by the defect and involves transition between two energy minima
(Mohanty et al., |2002). This mechanism can be effectively described using the
formalism of two-level systems (TLS). Mohanty et al.| (2002) have calculated that

for a TLS with energy E the additional dissipation for two limiting cases of E' is

given by
—2E/kgT
19 X0 € 2.55
NG W (2:59)
for E > kgT. And
. d
Q' = 7= (2.56)

for E < kgT'. Here a, d, and 7, are constants defined by the coupling of the TLS

to the local strain.

Surface effects

Recent experiments (Ekinci and Roukes|, 2005) show that the measured quality
factor in many devices decreases in a linear fashion as the surface-to-volume ratio
is increased (Fig.[2.6b). This suggests that surface losses play a significant role in
determining the quality factor. The losses associated with the surface can come
from many different factors such as residue, poorly terminated bonds in the surface

states, and a water layer. It has been shown that various surface treatments such as
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annealing (Yasumura et al., 2000)), oxygen removal from the surfaces (Yang et al.,
2000, 2001), and surface passivation using methyl monolayers (Wang et al., 2004])
can decrease the dissipation in mechanical resonators by as much as an order of

magnitude.

2.6.2 Extrinsic losses

Air friction

Depending on the pressure in the measuring chamber, the losses due to mechanical
structure interacting with air can be divided into two categories. At very low
pressures the interaction is in the “molecular” regime where the mean free path of
a single molecule is much larger than the length scale of the device. Here the losses

are due to the individual collisions with the molecules. The energy loss in a cycle

QL has been calculated for MEMS (Blom et al., 1992)) and for NEMS (Bhiladvala

gas

and Wang), 2004) to be

A
-1_ P (2.57)

MegWoU

gas

where p is the pressure in the chamber, A is the surface area of the resonator, m.g
is the effective mass of the oscillator, wy is its resonant frequency, and v is the
thermal velocity of the gas molecules. See Fig. [2.6.

At higher pressures, air can be considered as a viscous fluid. In this regime the

losses from air drag are given by Q% ~ ,/p (Landau, [1982).

gas

Clamping

A resonator can lose energy to the support structure by acoustic coupling. This

is especially important in the doubly-clamped beam geometry. Experiments with
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identical nanoscale beams with different clamping geometries showed that an im-
provement of ~ 2.5 can be achieved in free-free beams over doubly-clamped beams
(Huang et al., 2003b)).

Several different groups attempted to calculate the dissipation due to clamping.
Jimbo and Itao| (1968) were the first to give an estimate for the case of a thin,
infinitely wide cantilever attached to an infinite base:

0! ~ (2)3 (2.58)

where t, L are the thickness and the length of the cantilever, respectively. |Cross
and Lifshitz (2001)) performed calculations for the opposite limit where the base is
the same thickness as the cantilever and arrived at an approximation of the quality

factor of:
t
e (= 2.59
o'~ (1) (2.59)
Recently, (Photiadis and Judge, 2005 performed a calculation in a more general

case of a narrow (compared to wavelength) cantilever attached to a finite thickness

base (Fig. [2.6{d). Their estimation for loss was:

w [t

Ql~Y <L>4 (2.60)

for the fundamental vibrational mode, where w is the width of the cantilever.

Double-layer structures

For metallized devices, or for other double-layered structures, the additional layer
can also contribute to dissipation. This was observed experimentally for metallized
doubly-clamped beams (Sekaric et al., [2002) and metallized paddles (Olkhovets

et al., 2000). White and Pohl (1995)) calculated the contribution of a layer with
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internal friction ()5, thickness ¢, and elastic modulus F,, to a system with in-
ternal friction )y, thickness t; and elastic modulus E; (Fig. [2.68). Defining

B = tyoFy/t1 Ey, leads to

Q' = 5@ + e (2:61)

Dissipation due to the measuring scheme

The resonance actuation and detection techniques often require that additional
currents (or voltages) are passed through (or created across) the resonator. De-
pending on the parameters of the resonator, these may lead to dissipative forces.
We can describe this effect with a magnetomotive actuation/detection technique
(see section following |Cleland and Roukes (1999).

In a magnetomotive detection scheme, a driving current, I, is passed through
a resonator in the presence of magnetic field B. The motion of the resonator in

the magnetic field induces an EMF across the resonator given by

dz(t)
dt

where a, and L are the mode’s shape factor and the resonator length, and z(t) is
the midpoint displacement of the resonator. For an infinite external impedance,

the voltage is given by

al?B?
Vamp = i———5 I (2.63)
() -1+

w

where () is the mechanical quality factor of the resonator. This is equivalent to

an electrical circuit (see Fig. [2.6¢) with a parallel combination of a resistor R,,,
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inductor L,,, and a capacitor C,, given by (Cleland and Roukes| 1999))

Cm = 225

L,, = el’B (2.64)
wom

Rm - aL;BQ QO

wom

which leads to a characteristic impedance Z. = /L,,/C,,. For a finite external

impedance Z., the additional dissipation is given by

o Zc Rext

-1
Q ‘Zext|2

(2.65)

Approximating the impedance of an external circuit by resistance R, the expression

above simplifies to
_ L?’B%a
 Rmw}

Q! (2.66)

Similar analysis has been done for the case of magnetic driving and capacitive

detection (Schwab, 2002).

Ohmic losses

Another type of loss associated with external circuits are ohmic losses from the
electrons moving on and off the resonator due to capacitive coupling to a nearby
gate. This is another example of a loss that we can describe in the “Debye peak”
framework.

We first estimate the dissipation strength for this effect. The system can be
represented as a variable capacitor in series with a resistor to which a voltage
V' is applied. The change in the capacitance is determined by the amplitude of
oscillation, z, as AC' = C’z, where C’ is the spatial derivative of the capacitance.

The capacitively induced charge is given by Aq = ACV = C'zV.
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If the time scales for the electrons to flow on the resonator and the time for
one oscillation are matched perfectly, all of the charge flows through a resistor,
dissipating energy through Joule heating. The time scale for this charge to flow is
given by the RC' constant of the circuit, ¢ = 2rRC. The energy dissipated on the

resistor for this change in the capacitance is then

(AR (C'V2)’R
t  27RC

¢ =I*Rt = (2.67)

The energy stored in a resonator is given by E = 1/2kz%, where k is the resonator

spring constant. The dissipation strength is then

A:ﬁ%f (2.68)

The actual loss is given by the product of the maximum loss and the Lorentzian
defining the relative time scales for capacitance change, 1/w and the electron flow

time 7 = RC. The loss is then given by

L (Cv)? wT
@ = wkC (1 + (wT)2> (2.69)

2.7 Applications

Their small sizes and high frequency of operation make NEMS useful for a variety
of different of applications such as signal processing (Nguyen, 1999)), mass detection
(Ekinci et al.}, [2004], Ilic et al., 2004), force sensing (Stowe et al., 1997, Rugar et al.,
2004), and fundamental studies of quantum mechanics in a mechanical system
(LaHaye et al. 2004). In this section we will outline the principles behind two of

these application and give the limits of their performance.
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Table 2.1: Various dissipation processes and the losses associated with them. The
expressions are given for a doubly clamped beam (or a cantilever for the case of
clamping) with the following parameters. The resonator is of dimension ¢ x w x L,
and has cross-sectional area A and resonance frequency wgy. m is its effective mass
and F,c, k,a are the material’s elastic modulus, specific heat, heat conductivity
and linear expansion coefficient, respectively. The resonator is in the presence of
magnetic field B and air pressure p, and it has capacitance C' to an electrode with

voltage V. The resonator’s electrical resistance is R.

Dissipation process Q! References

Air friction 24 Bhiladvala and Wang (2004)
Clamping ~ 7 (%)4 Photiadis and Judge| (2005)
Metallic layer ﬁ(@;l + BQ3") | [White and Pohl| (1995)
Ohmic (?rlkvc)2 ( 1+L(d£;r)2 )

Magnetomotive fnz u%zg Cleland and Roukes 7(1999L
Thermoelastic effect O‘QCT, E (1 +‘(“£5T)2) Lifshitz and Roukes| (2000)
Electron-phonon interactions %% Braginsky et al.| (1985
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Mass sensing

Mass sensors operate by measuring the frequency shift of the resonance as ad-
ditional mass is adsorbed on the oscillator. Recalling Eq. for the resonant
frequency of a simple harmonic oscillator, we determine that the mass sensitivity
om is given by

_ Omeg dwy

om = oo dwy = 2megw—o (2.70)

Thus we see that the mass sensitivity is effectively determined by the effective
mass of the oscillator and the frequency resolution. The frequency resolution is
given roughly by the quality factor, even though typically the sensitivity is much

better. The smallest detectable mass is then

2
Sm = —ell (2.71)

Q

In recent experiments (llic et al., 2004, Ekinci et al., [2004)), mass sensitivities on

the order of attograms (107'8g) have been demonstrated.

Force sensing

Force sensing is used in several different techniques such as Magnetic Resonant
Force Microscopy (MRFM), Electric Force Microscopy (EFM), and others. These
applications use NEMS, typically in cantilever geometries as scanning probes sen-
sitive to some kind of interaction (i.e. magnetic or electric forces), to obtain spatial
information about the interaction in question. Recently, an ultrasoft cantilever was
used to measure the force from a single spin(Rugar et al., [2004)).

There are many sources of noise that limit the sensitivity of the measurement.
For a complete survey of various noise mechanisms and their respective sensitivities

see|Cleland et al. (2002). The ultimate limit to force sensing is given by the thermal
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vibrations of the cantilever. The spectral thermal density is given by

4kpkT
WOQ

where k is the spring constant of the cantilever, kg is the Boltzman constant, 7" is

(2.72)

Sthermal -

the temperature, wy is the resonant frequency, and @) is the quality factor.

2.8 Conclusions

In this chapter we have described the various aspects of nano-electro-mechanical
systems. We have discussed the theory of linear and nonlinear oscillators, and
have applied it to to calculate the resonant frequency of a cantilever beam and
a double clamped beam system. We gave a discussion of the possible losses in
NEMS that lead to the relatively low (compared with MEMS) quality factor. We
also described the various actuation and detection techniques that are used to
study NEMS and described two possible application for NEMS. We see that the
sensitivities for both of the applications increase with decreasing effective mass,
increasing vibrational frequency, and decreasing spring constant of the resonator.
The combination of both high frequency and a soft resonator is, however, hard
to realize. Two pathways have been taken to achieve this goal. The first is to
measure higher harmonics of the fundamental vibrational modes, and the second
is to build lighter resonators.

An ultimate solution to this is a carbon nanotube: it is an extremely light
material with a high elastic modulus, promising light, but high frequency, me-
chanical resonators. Since CNTs have very few structural defects and have nicely
terminated surfaces, we can expect from the arguments in section that CNT
resonators may have very high quality factors. Such reasoning motivates us to

build a mechanical resonator based on carbon nanotube.



CHAPTER 3

DEVICE FABRICATION AND MEASUREMENT SETUP
3.1 Introduction

Because nanotubes are extremely small in cross section, it is difficult to realize
a nanotube-based resonator with conventional actuation and detection methods
(section such as optical and magneto-motive techniques. Despite these chal-
lenges, a nanotube-based resonator in a cantilever geometry has been realized by
several groups (Poncharal et al.; (1999, Gao et al., 2000, Purcell et al.,[2002). In this
chapter we describe our method for electrically actuating and detecting the me-
chanical motion of a doubly clamped nanotube resonator (Sazonova et al., 2004).
We discuss in detail the device fabrication (Section [3.2), actuation and detection

techniques (Sections ,and , and the details of the measurement setup ,
and [3.6)).

3.2 Device fabrication

The samples studied in the thesis consist of suspended carbon nanotubes in a
transistor geometry (Fig. . We contact the CNT with two metal electrodes
and use the Si substrate separated from the CNT by an oxide layer as a gate
electrode. The CNT is either partially or fully suspended across a trench in silicon
dioxide. There are three major parts in fabrication: 1) growing tubes, 2) making
electrical contacts and 3) suspending the CNT. We outline the fabrication steps
below (see Fig. [3.2).

First, alumina supported FeO3/MoQO, catalyst pads are patterned using pho-

tolithography onto a degenerately-doped Si wafer with 500nm of surface oxide. The

o1
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Figure 3.1: Device geometry schematic. (a) A false-colored SEM image of a
suspended device taken at a 45° angle. Scale bar is 300nm. Metal electrodes
(Au/Cr) are shown in yellow, and the silicon oxide surface in grey. A schematic
of a device created with method #1. The sides of the trench, typically 1.2pum
wide and 400nm deep, are marked with the dashed lines in the SEM images. A
suspended nanotube can be seen bridging the trench. (b) A schematic of a device
created with method #2. Typical gaps are 2um. (c) A schematic of a device

created with method #3. Typical gaps are 2 — 3um.
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Figure 3.2: Fabrication steps. Catalyst pads are patterned onto a Si/SiO, wafer.
CNTs are grown using CVD methods. After growth, electrodes are defined on top
of the catalyst pads, and a Au/Cr layer is evaporated. A wet-etch step in buffered
oxide followed by a critical point drying step is then performed to suspend the CNT.
The etched portion of oxide is defined by either using the contacts as a mask or
by lithographically defining a thin trench in between the contacts. Alternatively,
a CNT can be grown last, on top of the deposited Pt contacts over a predefined

trench in the oxide.
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wafer is then placed into a chemical vapor deposition (CVD) (Kong et al., [1998)
furnace at 900°C with a constant flow of methane to grow the tubes. After growth,
electrodes with typical gaps of 2 — 3um are defined photolithographically (Rosen-
blatt et al., 2002) along with the electron beam lithography alignment marks on
top of the catalyst pad. A metal layer is then evaporated, typically 50 — 80nm
of Au with a bnm Cr adhesion layer, to contact the NTs. To suspend the CNT
we perform a wet etching step in buffered oxide etch (BOE 6:1, nominal etch rate
80nm/min) (Walters et al. (1999, Nygard and Cobden, 2001)). There are two differ-
ent ways to define the etched portion of the oxide. In method #1 we use PMMA
resist as a mask and define a thin (100 — 300nm wide) line between the electrodes
by e-beam lithography to be etched. In method #2 we use the electrodes as an
etching mask. After etching, a critical point drying step is performed to prevent
the CNT from sticking to the substrate. A final step is annealing in the furnace at
400°C — 600°C with Ar gas flow. Alternatively, in method #3, we can reverse the
order of the steps. We first define the trenches in silicon oxide by either of the two
techniques describes above, then define Pt electrodes, typically 50nm, then define
a catalyst pad on top of the electrodes, and grow nanotubes across the trench (Cao
et al., 2005).

With these methods we typically obtain devices that contain one or a few nan-
otubes. The diameters are 1 —4nm, which is typical for CVD growth (Kong et al.
1998). Typical resistances of our samples range between 30k{2 and 1M¢). Similar
devices with better conductances have been reported in the literature (Javey et al.,
2003)). However, these devices are typically made without an adhesion Cr layer,
which for our suspended-nanotube devices is essential. Without the adhesion layer,

the Au lifts off from the substrate during the etching step. In order to improve
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the conductances in our devices we resort to an annealing step. This process is
essentially an “ashing” procedure that improves the contact resistance and cleans
the surface from the residues of processing (Rosenblatt et al., 2002]).

A false-colored SEM picture of a typical final device suspended with method
#1 and its schematic can be seen in Fig. [3.1h. We see a nanotube suspended over
a trench bridging source and drain electrodes. The apparent buckling of the CNT
is a real effect. It is due to CNT curvature prior to suspension which results in
the CNT being longer than the width of the trench. The downward direction of
the buckling is set by the electric field from the gate electrode. In principle, in the
absence of an electric field this direction is arbitrary, as the gravitation force of the
nanotube is negligible.

The dimensions of the trench are ~ 1.2um wide by 400nm deep. Note that the
resulting trench is much wider than defined by e-beam lithography. This increase
of the width of the trench is due to the isotropic etching of BOE. After etching the
trench increases by twice its depth. Since the width of the trench is still smaller
than the distance between the electrodes, a small section of the tube resides on the
oxide. CNTs are known to adhere well to silicon oxide (Hertel et al. |[1998) and so
we assume that this adhesion ensures good clamping. This existence of the non-
suspended portion of the CNT enables us to take atomic force microscopy (AFM)
images of the tube and determine its diameter. An example of an AFM image
can be seen in Fig. [3.3b. The suspended part of the tube appears fuzzy on the
image as it is free to move around and thus interacts with the AFM tip at different
positions; the non-suspended part of the tube appears as a line of constant height
on the image.

Figure shows a schematic of a device in which the nanotube was suspended
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with method #2. In this geometry all of the oxide between the electrodes is
removed, and since the etch is isotropic, the electrodes develop an overhang as wide
as the depth of the trench. The clamping in this case is provided by the tube-metal
adhesion. It was found, in experiments on modifying the CNT band-structure by
strain with similar devices, that the NT-metal clamping could withstand forces up
to 20nN before the the tube was ripped out from the contacts (Minot et al., 2003]).

Figure shows a schematic of a device in which the nanotube was suspended
with method #3. In this geometry all of the oxide between the electrodes is
removed by either the a wet etch or a dry etch. The nanotube is grown on top of
the contacts and the clamping in this case is provided by the tube-metal adhesion
(Cao et al., |2005).

Unfortunately, imaging devices with SEM and AFM can be destructive to the
sample. We found that SEM causes a substantial decrease in the conductance of
a device. We do not understand the origins of this effect. Some brief discussion
is provided in Appendix |[Bl Taking AFM images of suspended device may also be
destructive to the sample. Since the CNT sticks briefly to the AFM tip during the
scan, imaging perpendicularly to the direction of growth can break the nanotube.
Even when imaging parallel to the CN'T one must exercise caution in choosing the
speed and overall area of the scan. We found that scan areas of 3um squares taken
at rates of 1Hz or less work fairly well. When moving from one area to another
one needs to ensure that in this translational move the AFM tip does not go over
a suspended nanotube. So even though AFM imaging is possible, it must be used
with caution. Because of these concerns we did not image any of the studied

devices.
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Figure 3.3: (a) AFM image of suspended nanotube device. The sides of the
trench are marked with the dashed lines. (b) An AFM tip height trace across a
non-suspended portion of the nanotube. The red triangular markers indicated the
position of the CNT and the oxide along the trace. The height difference between

the markers is 2.9nm - the diameter of the tube.
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3.3 Actuation Technique

We actuate the nanotube motion using the electrostatic interaction with the gate
electrode underneath the tube (see Fig. ) A gate voltage V, induces an ad-
ditional charge on the CNT given by ¢ = C,V,, where C, is the capacitance to
the gate. The attraction between the charge ¢ and its opposite charge —q on the
gate causes an electrostatic force downward on the CNT. If C = dCy/dz is the
derivative of the gate capacitance with respect to the distance between the tube

and the gate, the total electrostatic force on the tube is
1 I\/2
Fo= EC’ng (3.1)
If the gate voltage is modulated at some driving frequency w,

Ve = VgDC + V, cos(wt) (3.2)

Vg

The total electrostatic force on the tube is
1 W
Fa = SOV (V0 + 21) (3.3)

where we have neglected the term proportional to ‘7g”2.
We see that Fi) has two parts: the DC term controlled by the DC voltage VgDC

and the AC term produces by the AC component of the gate voltage \7g“’.

DC _ 1 DC?2
Fel - Ecé ‘/g (3 4)
[~ DCY/ w

Fa = CLVPeV;
The DC term is used to control NT’s tension, and the AC term sets the CNT into

motion. As the driving frequency w approaches the resonance frequency wy the

displacements become large (see section [2.2)).
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Figure 3.4: An equivalent circuit diagram for a CNT device. (a) A schematic
of the actuation and detection methods. DC and AC voltages are applied to the
gate electrode to excite the vibration. On resonance the CNT is a source of the
AC conductance modulation. (b) A schematic of the contact pad - gate capacitor.
(c) An equivalent circuit for a CNT device. The CNT is approximated as a
ballistic conductor in series with two contact resistors. (d) The equivalent circuit

for calculating the output bandwidth of a NT.
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3.4 Detection technique

To detect the motion of the nanotube on resonance we rely on the N'Ts transistor
properties. For semiconducting (Tans et all [1998) and small band-gap semicon-
ducting carbon nanotubes (Zhou et al., 2000, Minot et al., [2004) the conductance
depends on the induced charge on the tube. A modulation in the charge, ¢, then
leads to a modulation in the CNT’s conductance G = %cj. The conductance can
be modulated by changing either the applied gate voltage or capacitance to the
gate.

q= ég(W)VgDC + Cg f/gw (3.5)

where we have again assumed that the modulation is small and neglected the cross
term.
If Z is the distance between the tube and the gate, Zj is the initial distance,

and z(w) is the NT’s amplitude of motion defined by Eq. [2.4] then in general:
Z(w) = Zy — z(w) cos(wt) (3.6)

Due to this motion the tube-gate capacitance is modulated at the frequency w with

the amplitude of
Cy(w) = Cyz(w) (3.7)

As described above, capacitance modulation leads to modulation of the induced

charge

§ = Cy(w)Vy = Cyz(w)V>¢ (3.8)
and to the conductance modulation given by

- dG . dG ,
G= chq = d—quz(w)VgDc (3.9)
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From Eq. [3.9] we see that conductance is modulated at the driving frequency,
and is proportional to the NT’s amplitude of motion. The maximum conductance
modulation then occurs as the driving frequency approaches the resonance fre-
quency (see Eq. . For our geometry that corresponds to frequencies in the tens
of MHz range. Thus, to measure the conductance modulation directly (in real
time), we would have to detect a small electrical signal at a high frequency out of
a highly resistive device.

We can calculate the bandwidth of a CNT by approximating it as a ballistic
conductor in series with two contact resistors and assuming that stray capacitances
come mostly from the contact pad - gate leakage (see Fig. [3.4c). A typical device
has resistance on the order of R, = 100k(2. Assuming symmetric contacts, each
contact resistance is Ry, = Rq = 5H0k(). To calculate the contribution to stray
capacitance from each contact pad, C and Cy4, we use a parallel plate capacitor

model (see Fig. |3.4p).
€oeA

C:d

(3.10)

where € is the dielectric constant of SiOs, A is the area of the contact pad, and d
is the thickness of the oxide layer. For the contact pad dimensions in our devices
(illustrated for drain electrode in Fig.[3.4b) we estimate Csy = 6pF, and Cyq = 40pF.
The equivalent circuit for detecting high frequency signals out of the CN'T is shown
in Fig. 3.4d. Approximating the circuit by a low-pass filter, we calculate that the

corner frequency for this setup is given by

corner — =5 o~ 100kH 3.11
f QWRdCd z ( )

Such low readout bandwidth of the device prevents us from a direct (real time)

measurement of the conductance modulation on resonance.
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3.5 Mixing circuit

Two different methods have been previously employed to solve this problem in case
of small electronic devices (Schoelkopf et al., |1998, |Knobel and Cleland, 2003). If
the desired detection frequency (CNT resonance frequency in our case) is known, a
matching circuit that transforms the impedance of the device to 5082 at the desired
frequency can be built (Hagen| |1996, Schoelkopf et al., [1998)). Alternatively the
signal can be mixed down to frequencies below the cutoff of the device (Hagen,
1996, [Knobel and Cleland}, 2003, Bargatin et al., 2005). Both approaches have
been successfully used with NEMS. As the resonance frequency in our case is not
known a priori, we have chosen the second approach.

We employ the nonlinearity in the current-gate voltage dependence in our de-
vices (the non-zero transconductance dG/dV;) to use the CNT as a mixer. The
detailed theory of mixing with transistors in general, and CNTs in particular is
given in Rosenblatt| (2005). Here we give a simplified introduction to theory of
mixing with N'Ts.

In general if the CNT conductance, GG, is modulated at a some frequency w as

G = GP° + G cos(wt) (3.12)
—_————

Gw
and we apply a local oscillator (LO) signal to the source electrode at a slightly

offset frequency w + Aw

yethe — Vg cos((w 4 Aw)t) (3.13)

rw+Aw
Vaa

The current, I, through the nanotube will have both frequency components, since

it depends on the source-drain voltage and the conductance of the CNT. Using
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equations and we get that
I = GVi= (G +G¥)(Vag™)
_ GDC{/Sﬁ—i—Aw + GWZUdH—Aw (314)

The first term describes the current at the LO frequency. The second term,
though, is more interesting — it consists of the the product of two AC signals and

is the term that is responsible for the mixing. If we expand the last term using

Egs. and [3.13], we get

GeVetAe — G cos(wt)Vig cos((w + Aw)t)

S

= CNHN/Sd; (cos(2wt) + cos(Awt)) (3.15)

which means that the amplitude of the current through the nanotube, I°“, at the

intermediate frequency Aw, is equal to
GVaa (3.16)

and is proportional to the conductance change of the nanotube. Using Eqgs. |3.5

and we finally derive that the total current is

[Aw —
2 dq

_ Lo (C”z(w)VgDC + Cy Vg) Vi (3.17)

g
Since we can make the intermediate frequency Aw arbitrary small, this technique
enables us to measure the amplitude of high frequency conductance modulations

of the nanotube by measuring the current through it at frequencies that are within

the readout bandwidth.

3.6 Measurement setup

The measurements were performed inside a Desert Cryogenics variable temperature

vacuum probe station at pressures of 1075 torr or less. The sample is placed onto
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Figure 3.5: Schematics of the experimental setups. (a) Two-source setup. A local
oscillator voltage ~S°5+Aw (usually around 7mV) is applied to the source electrode
at a frequency offset from the gate voltage signal ‘7; by an intermediate frequency
Aw of 10kHz. The current from the nanotube is detected by a lock-in amplifier, at
Aw. (b) One-source setup. An AM modulated high frequency voltage NS‘&’ (usually
between 3 — 10mV) is applied to the source electrode in the presence of a static
electric field provided by the DC gate voltage VgDC. The current from the nanotube
is detected by a lock-in amplifier, at Aw — the AM modulation frequency (1kHz

or 400Hz).
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a sample stage which is thermally coupled to the reservoir through which the
liquid *He can be pumped. The temperature is controlled by monitoring resistive
thermometers at the sample stage, and by use of the resistive heaters on the stage.
For electrical measurements the sample is contacted with metallic probes capable
of delivering signals at frequencies up to 2GHz. 50f2 resistors in series with 10nF
capacitors were soldered into the probes to minimize circuit resonance by matching
the impedance of a line near the sample. The capacitors were introduced to allow
for DC measurements as well, and were chosen such that their presence would not
affect the impedance in the frequency range of interest.

Two different electrical setups were used; the first we label the “two sources”
setup, and the second is called the “one source” setup. The complete circuit dia-
gram for both of the setups can be seen in Fig. Both of the setups employ the
capacitive detection method with the mixing technique described in the previous

section, differing only in how the modulation of the gate voltage is achieved.

Two sources setup

In the “two sources” setup the high frequency signals on the gate electrode (for
driving the resonator) and on the source electrode (for mixing) are applied from
two different high frequency sources: HP87332A (10MHz —40GHz), and HP8657A
(0.IMHz — 1040MHz). The DC voltage on the gate is provided by a computer
controlled digital-to-analog card, which is connected to the gate electrode through
a bias-T. The current through the nanotube is detected by a DC-coupled Stanford
lock-in amplifier(SR830) in the current mode. The reference signal to the lock-in
amplifier is provided by separately mixing the two high frequency signals used

for gate and source electrode with an external mixer (Minicircuits ZLW-1SH).
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The reference input lock-in amplifier serves as the low-pass filter with the corner
frequency of 100kHz so no additional low-pass filter is necessary to eliminate the
high-frequency components from mixer.

In this setup the voltages on the gate, source and drain electrodes are:

Vo=V + V, cos(wt)
Vi, = Vig cos((w + Aw)t + ¢) (3.18)
Va=0
where w, Aw, and ¢ are the current driving frequency, lock-in readout frequency
and the gate-source phase difference, respectively.
By looking at the circuit diagram (Fig. [3.5a) we see that the potential of the

tube, Viupe, is given by
Ry

Viube = (Vq - Vd)m

(3.19)

which for the contacts of equal resistance reduces to %VS. For the “two sources”

setup the potential of the tube is then
1~
Viube = §Vsd cos((w + Aw)t + @) (3.20)

The effective gate voltage, Vgeﬂ, that the tube feels is given by the voltage on the
gate with respect to the potential of the tube, V; — Vi pe. Using the above equations

we find that the effective gate voltage is
A e Ly A 3.21
L =V, 4 Vycos(wt) — 5 Vad cos((w + Aw)t + ¢) (3.21)

Even though the effective gate voltage and thus the induced charge and CNT
conductance contain an additional component at w4+ Aw, the amplitude of mixing

current detected at Aw given in Eq. is not affected.
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Amplitude modulation

Before we explain the configuration for the second setup let us note that the effect
of the source-drain voltage on the potential of the tube described above provides an
alternative way to achieve modulation of the gate. Even in the absence of any AC

signal applied to the gate, by preceding arguments the effective gate is modulated

as
eff DC 1~ w
Vit =V — §Vsd (3.22)
Then in principle both of the signals, the driving excitation ~Sﬁ and the mixing
excitation 17;1”“, can be applied to the source electrode. This greatly simplifies

the circuit because we can produce both of them with one high frequency source,
using the source’s amplitude modulation (AM) capabilities.
AM modulation at frequency Aw with strength m for an arbitrary signal

A cos(wt) is defined as

Vam = (14 mcos(Awt))A cos(wt)

= Acos(wt) + Azm (cos((w + Aw)t) 4+ cos((w — Aw)t))  (3.23)

So an AM modulated signal is equivalent to three high frequency signals offset by
the modulation frequency. In the language of the “two source” setup the driving

excitation and the mixing excitation are then equal to

‘7g‘” — Vg cos(wt) (3.24)
Vi = Via Ty cos((w + Aw)t) (3.25)
jamhe — ‘;;d% cos((w — Aw)t) (3.26)

Both Ve+2% and V4~4¢ will mix with f/g‘“, producing a signal of the same phase

and magnitude. Thus for the purposes of mixing this situation is equivalent to
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having the following

f/g“ = Viq cos(wt) (3.27)
~S‘§+A” = Vam cos((w + Aw)t) (3.28)

One source setup

The setup for the “one source” technique is then as follows. One AM-enabled high
frequency source (HP8657A) is connected to the source electrode of the device
and provides the two signals necessary for both driving the resonator and mixing
down the response. The DC gate voltage is supplied by the computer-enabled
digital to analog card just as in the previous setup, which in this case is connected
directly to the gate electrode. The current through the device is still measured by
the dc-coupled Stanford lock-in amplifier in the current mode, with the reference
signal provided by the reference to the AM modulation. The typical modulation
strengths used throughout this thesis are m = 99%.
In this setup the voltages on the gate, source, and drain electrodes are:
v, = V:gDC
Vi = Via(cos(wt) + 222 (cos((w + Aw)t + ¢) + cos((w — Aw)t + ¢))) (3.29)
Va=0
In principle this technique can be used with the intermediate frequency set
to zero, Aw = 0, which eliminates the need for the lock-in amplifier, the two HF
sources, or the AM modulation, as the same signal can be used for both, driving and
mixing (Rosenblatt et al., 2005). However there are a few complications in using
this DC method. First and most noticeable is the fact the any current amplifier
used to detect the current will always produce a back DC voltage that needs to

be zeroed out in order to distinguish the mixed signal from the “normal” current
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due to this amplifier voltage. This voltage changes any time the circuit is modified
so that the current amplifier has to be constantly readjusted. The second, more
concerning problem is that the noise level with a DC readout technique is much
higher than at 1kHz due to 1/f noise. Thus for the purpose of this experiment we
have decided to use the non-zero intermediate frequency method, with a frequency

of 1kHz.

3.7 Mixing from a nonsuspended device

Before performing any measurement on a nanotube resonator, we would like to
test and calibrate the setup. Using a non-suspended device for this purpose turns
out to be extremely useful. We start by discussing what signals we expect from
such a device.

Let us go back to Eq. which describes the expected mixing current through
a CNT. For convenience we reproduce it here.

1dG
= 2dq

IAw

! C v ¥
=5 (@ Hw) VP + CVy) Vaa (3.30)

g

The first term is described in section [3.4] and for a case of a non-suspended
device is zero, as z(w) = 0 at all w. The second term is due to the second term
in Eq. 3.5 the gate voltage modulation. This term is frequency independent, of
purely electrical origin, and is present whether the device is suspended or not.
The mixing current through a non-suspended device is then just due to the second
term.

We expect the mixing current to be proportional to the transconductance %
of the nanotube. We can independently measure the transconductance of the

nanotube by measuring its DC conductance and using the fact that in the non-

vibrating state, ¢ = Cgf/g. Thus, the transconductance can be extracted from the
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Figure 3.6: (a) Mixing signal and the predicted signal from the transconductance
of the device. (b) Mixing current (in color) as a function of the gate voltage and
driving frequency. Cuts through the data set at V; = —0.5V and f = 25MHz are

marked with dash lines.
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DC current as
a6 _ 6™ 1
dg — dVy C,

(3.31)

The amplitude of the total expected current through a non-suspended device is

then given by
[Aw _ ldGDC
2 dVy

ViV (3.32)

Fig shows a comparison of measured mixing current and the predicted
current from a numerical derivative of the NTs conductance (inset) for a non-
suspended device. The shape of the signal agrees well, but the amplitude of the
signal only reaches about 50% of the predicted value. We will return to possible
sources of dissipation later in this section.

In order to explore this further we can measure the mixing current through the
nanotube as a function of driving frequency. Fig shows the mixing current
in color as a function of both gate voltage and driving frequency. Figs and
d are cuts through b at constant gate voltage and frequency, respectively. There
two things that we notice about this graph. First, there is an overall decay of
the signal with increasing frequency, with the signal becoming unmeasurable at
around 600MHz; and second, there are periodic oscillations superimposed on top
of the signal with a periodicity of about 35MHz.

The overall decay of the signal can be attributed to capacitive leakage to the
gate. The stray contact pad to gate capacitances provide an alternative route to
ground at high frequencies. The circuit (Fig. becomes equivalent to a low-
pass filter with a resistance given by the source output impedance (50€2) and a

capacitance given by the equivalent capacitance of both pads in series. The corner
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frequency for the voltage on the tube Vj is then given by

1
f=— ~650MHz (3.33)

N 27r(509)cffgd

This agrees well with the observed decay of the signal. In other experiments on
non-suspended CNT this problem has been resolved by introducing a local gate
which increased the corner frequency to 50GHz (Rosenblatt et al.), 2005]).

Even though the input lines were 50Q-terminated, as we see in Fig[3.6b, some
circuit resonances are still present. We could not determine the origin of these
remaining resonances, although the periodicity of the peaks in Fig. suggests
that the quarter wavelength of the circuit resonance is on the order of 2m which
roughly corresponds to the length scale of the cables in the circuit. The exact
pattern of this resonance varies from sample to sample and the strength can greatly

increase if a bad contact is made with the probe.

3.8 Conclusions

In this chapter we discussed the fabrication of the suspended CN'T devices and mea-
surement setup for actuating and detecting the mechanical motion of a nanotube
resonator. CN'T devices in transistor geometry were fabricated using standard fab-
rication methods, and then suspended by wet etching. The motion of the resulting
suspended CNT was actuated using capacitive forces between the CNT and the
underlying gate electrode. The motion was detected by measuring changes in the
CNT conductance due to modulations in tube-gate capacitance. As the output
bandwidth of a CNT is too low to measure the conductance changes directly, a
mixing scheme was devised. Two different measuring setups were devised to drive

and detect the motion of the CNT. The setups were tested using a non-suspended
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CNT device, which produces signals consistent with theoretical predictions. The
mixing signal was found to decay due to electrode - gate capacitive coupling, and

exhibited periodic resonance that we attributed to resonances in the circuit cables.



CHAPTER 4

TUNING THE FREQUENCY
4.1 Introduction

In this chapter we describe the first measurements of the nano-mechanical nan-
otube resonator (Sazonova et al) [2004) introduced in Chapter [3| In section
we describe the first observation of the mechanical resonance phenomena and the
effect of the static gate voltage on this resonance. In section |4.3] we introduce a
qualitative model for the nanotube resonator, which we develop further into a more
quantitative analysis in section [£.4] We conclude this chapter by comparing the
behavior of the observed resonances with the model (section and discussing

some of the behavior not described by the model (section [4.6)).

4.2 Observing the resonance

Using the measurement procedure described in section [3.6] we can plot the drain
mixing current measured by the lock-in as a function of the driving frequency.
Figure [4.1) shows results for several different devices. We notice that each plot
shows a distinct feature in the current on top of a slowly-changing background.
Remembering the expression for the drain current (Eq. from section ,
we attribute the slowly changing background to the mixing current due to the
modulation of the gate voltage (similar to the the nonsuspended case). The sharp
feature is due to to nanotube’s mechanical motion on resonance, modulating the
gate capacitance and thus producing an additional signal in the mixing current. We
will discuss the details of the lineshape of this resonance and extract the important

mechanical parameters for this resonator in the next chapter. We see a lot of
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76

variation in the resonant frequencies of the measured resonances. In total we
observed resonant frequencies in the 5MHz — 400MHz range among the 30 devices
that exhibited resonance.

Before going into the quantitative analysis of this resonance we will study its
behavior as the downwards DC force on the nanotube is changed. From Eq.
we know that the DC gate voltage controls the overall DC force on the nanotube
and defines the tension in the nanotube. Thus, by varying the DC gate voltage we
will effectively be changing the tension in the nanotube.

Figure shows the traces of mixing current vs. frequency for several different
gate voltages, for the same device as shown in Fig. [f.Th. For clarity, the curves
are vertically offset. The position of the resonance changes as the gate voltage is
adjusted. We can also fix the driving frequency, scan the DC gate voltage, and
observe the resonance appear and disappear (Fig. |4.2b).

In order to determine the position of the resonance as a function of gate voltage
we take a 3D scan of the mixing current as a function of both driving frequency
and DC gate voltage, as shown in Figure [£.3] The measured current is presented
in color-scale as a function of the driving frequency (y-axis) and the static gate
voltage (x-axis). Overall the plot looks similar to the non-suspended case (Fig.
; however, on top of the smoothly varying background we see several sharp
lines indicated by arrows in Fig. [4.3, The lines indicate the occurrence of a sudden
change in the drain mixing current, associated with the mechanical resonance in the
nanotube. By extracting the position of these lines we can monitor the position of
the N'T’s mechanical resonance in the gate voltage — frequency domain. We refer
to the position of the resonance as a function of the gate voltage fo(V,) as the

“dispersion relation”. For the rest of this chapter we will only be concerned with
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these dispersions and ignore the overall value of the current and the background.
We will come back and analyze those in detail in Chapter [5]

There are three things worth noticing about the change in the position of the
resonances as a function of gate voltage: first we see that the dispersion is ap-
proximately symmetric about zero gate voltage, second we observe several distinct
resonances for most of the devices, and finally we see that the resonant feature
shifts upward monotonically as the magnitude of the DC gate voltage is increased.

In the following section we will qualitatively explain these observations.

4.3 NT resonator model

In order to make a model for a CNT resonator, let’s look back at an SEM image
of one of the suspended devices (Fig. [3.1h). We see on the image that the CNT
appears to be slack, as indicated in the schematic. Slack here means that the tube
is longer than the distance between the suspension points, which is a result of the
NT’s curvature on the substrate prior to suspension. We define slack s as the ratio
of the extra length in the nanotube to its length L, where the excess length is the
difference between the length of the CN'T and the distance between the suspension

points, W.

(4.1)

Slack was observed for almost all imaged devices in a SEM and has also been
inferred from AFM force measurements on similar samples (Minot et al., [2003).
The typical values of slack extracted from those experiments were on the order of
1% — 2%. For the device geometry presented in Figure [3.1| with W = 1.75um this
corresponds to a sagging distance of 150 — 200nm. For simplicity we assume that

the clamping angles are zero in both the y, and z directions; in other words, that
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the nanotube is confined to one plane and clamped horizontally. The profile of the
nanotube is then a profile of a buckled beam (Fig. |4.4a). The DC gate voltage
creates a DC force on the nanotube that we assume for a moment to be applied
uniformly along the length of the nanotube. Under such a force the nanotube is
pulled down, changing its profile according to the strength of the applied force. For
very small forces the flexural rigidity of the tube is the dominant force scale, and
the profile of the CNT is still given by the profile of a buckled beam: we refer to
this force range as the bending regime. As the force increases, the flexural rigidity
of the CNT is overcome and the CNT profile forms a catenary (Fig. |4.4b): we
refer to this regime as the catenary regime. As the force is increased even further
the tube starts to stretch. The extensional rigidity of the tube becomes dominant
and the tube enters the elastic regime (Fig. 4.4c); the profile of the tube is still
catenary.

In this model for the CNT resonator the profile and tension are controlled by a
uniform downward DC force, set by the DC gate voltage. The resonant frequency
of the CNT depends on both the NT’s tension and the N'T’s profile. The nanotube
can have two different kinds of vibrations: in-plane and out-of-plane (see Figs. ,
e). These vibrations are degenerate at zero slack, but with finite slack they have
different frequencies due to symmetry breaking. Harmonics of both of these kinds
of modes can be excited with frequencies increasing with the number of nodes in
the mode. It is, therefore, not surprising that we see several distinct resonances for
a given device. These could be some of the harmonics of the fundamental in-plane
and out-of-plane vibration modes.

In beam mechanics (section the resonant frequency of the beam increases

monotonically with tension. We expect the same effect with a slack beam. The
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Figure 4.4: NT Resonator model. (a),(b),(c) Schematics of a CNT resonator
profile in bending, catenary and elastic regimes, respectively. (d) A schematic of
the fundamental in-plane vibrational mode. (e) A schematic of the fundamental

out-of-plane vibrational mode.
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tension in the CNT is set by the DC force on it and, using Eq. [3.4] we see that
the DC force depends on the square of the applied DC gate voltage. In a real
system the tube will feel a potential in addition to the one set by the gate voltage
due to the work function difference between the tube and the contacts and various
dopants. This potential can be incorporated into Eq. as an offset gate voltage

Vb, so that the DC force on the tube becomes
pc _ L v (e 2
FR° =50, (VPC - W) (4.2)

From this relation we see that the CNT tension and the dispersion of its resonant
frequency only depend on the magnitude of the voltage, are symmetric about

VgDC = Vp and increase monotonically with gate voltage.

4.4 Calculating resonant frequencies

We now analyze our model and present the results of numerical simulations (Ustiinel
et al., [2005) that will be discussed below. In our analysis we closely follow Ustiinel
et al. We calculate how the gate voltage affects the resonances of a buckled beam
with small slack in three different regimes: bending, catenary, and elastic.

Before going into the details of the calculation, we summarize the basic result
that is illustrated in Fig. [£.5] In the bending regime the vibration modes are
similar to the doubly clamped beam modes. For small induced tensions the change
in the frequency Awy is proportional to tension T', and thus Awg ~ T' ~ V;. In the
catenary regime the flexural rigidity is overcome and the CNT is similar to a string
under tension with wy ~ VT ~ Ve. In the elastic regime the CNT is stretched,
and we still treat it as a string under tension with wqy ~ VT. Since the extensional

rigidity is now dominant, the induced tension starts saturating with increasing gate
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Figure 4.5: A qualitative prediction for the resonance frequency dispersion. In
the bending regime the resonance frequency depends quadratically on the gate
voltage, in the catenary regime the resonance frequency changes linearly, and in

the elastic regime the dependence becomes sub-linear.
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voltage, and the dispersion is sub-linear. So overall the frequency first changes
quadratically on the gate voltage, then continues linearly, and eventually slowly
starts to saturate at high gate voltages.

All the calculations presented here are done for a typical CNT device. We

summarize the characteristics of such a device in Table [4.1]

Bending regime

For no force, F?¢ = 0, and zero slack, the problem reduces to that of the doubly
clamped beam with no tension, which was solved in section [2.3] The in-plane and

out-of-plane modes are degenerate and their resonance frequencies are determined

by the flexural rigidity of the nanotube and are given by (Eq. [2.21))

wma B\’ [EI
wﬁ d— (L) \/7 (4.3)

where F, I, and p are the Young’s modulus, moment of inertia, and linear mass
density of the tube, respectively. 323 are equal to 4.75, 7.85 and 11. These points
are indicated as open circles in Fig. for s = 0.

As slack is introduced, the tube buckles due to the Euler instability and the
symmetry of the problem changes. For small forces, FY° < EI/L? the flexural
rigidity dominates the extensional rigidity. This means that the vibrations of the
CNT are primarily due to NT’s bending and not stretching, which essentially
means that the length of the tube is constant under vibrations. Due to this length
constraint, slack affects resonant modes differently with different symmetries, such
as the in-plane and out-of-plane modes or the even and odd harmonics of their
fundamental modes. This effect is illustrated in Fig. 4.6

The out-of-plane modes are almost unaffected by slack since the length of the

tube does not change during vibration, with the exception of the fundamental
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Table 4.1: Parameters for a typical CNT device

Parameter Symbol Value
Radius r 1.5nm
Length L 1.75um
Shell thickness h 0.34nm
Slack s 1%
Elastic modulus E 1TPa
Linear mass density 7 bag/pm
Cross-sectional area A 2nm?
Moment of inertia 1 3 x 10737
Capacitance Cy 1.3 x 107Y"F
Capacitance derivative Cy 4 x 1072F/m




86

d
BOOL( ) _ 160
700 — e 140
B0 Mot smrar TR e, i 120 _
................ 2
= 500 o (82 {1100 @
P e =
= 400 . { 80 ,%
= Il i R e =
~ 300 2in ™ 1 60 g
. S =
200 .-.---.-.'.".-.----. e e e R o R - S 40 =
. l >
100 _______________________:20
g g g

0 0.06 0.1 0.15 0.2 0.25 0.3
s [%]
Figure 4.6: Effect of slack on different modes. (a) The even harmonics of the
fundamental in-plane vibrational modes acquire two additional nodes as slack is
increased. (b),(c) The shape of the odd harmonics of the fundamental in-plane
mode and the all of the harmonics of the out-of-plane modes remains unchanged.
(d) Numerically calculated frequency shift of all of the resonance modes with
increasing slack for the out-of-plane modes (dashed lines), and odd and even har-
monics of the in-plane modes (solid and dotted lines, respectively) (Ustiinel et al.|

2005).
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mode, which, due to symmetry, corresponds to a rotation about the clamping axis
at finite slack and thus has zero-frequency at zero external force (see Fig. [4.6¢).
Any symmetry breaking mechanisms (for example, different clamping angles) cause
the mode to acquire a finite frequency. For the other out-of-plane modes the values
of B, for the resonance frequencies are slightly modified with the introduction of
slack, but for small slack this modification is independent of the value of the slack
itself.

The odd harmonics of the in-plane modes are also affected only slightly by slack
as the length constraint is met automatically due to odd symmetry (Fig. [4.6p).
Their frequencies then only change due to a small change in the values of 3, in the
same fashion as for the odd harmonics of the out-of-plane modes. The degeneracy
between the two is then not broken. The even harmonics of the in-plane modes
are modified the most (Fig. 4.6a). As slack is increased the modes acquire two
additional nodes in order to conserve the length, and their resonance frequencies
increase to those of the corresponding out-of-plane modes, which results in a mode

crossing between the odd and the even harmonics (illustrated by an arrow in Fig.

4.6d).

Catenary regime

In the catenary regime, the force is intermediate, FY¢ ~ EI/L? and a tension T
is induced in the beam. The resonance frequencies are given approximately by the

tense string model (Eq. [2.26)),

= s 44
“n =T\ % (4.4)

We now need to express the tension induced in the nanotube in terms of the applied

DC force FRC. In principle, if z(z) defines the profile of the nanotube along its
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Figure 4.7: Calculating the dispersions and the applicability of the regimes with
a toy theoretical model. (a) A schematic of the toy model for the catenary regime.
The loading force F' is applied in the center of the CNT of length L. The distance
between the clamping points is W. (b). A schematic of the toy model for the
elastic regime. The CNT is now subject to a larger force, that stretches the CNT
by AL. (c) A diagram of the applicability of different regimes in the slack-gate

voltage space calculated for a typical device described in table
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length coordinate = under FP°, we recall that the tension in the nanotube is given

el »
by (Eq. 227)

EA (L
T:i 0 Z/2dSU (45)

where A is the area of the CNT and 2’ is the spatial derivative of z. In order to find
the tension, we can first find the profile of the CNT from the equilibrium equation
(Eq. and then find the tension self-consistently (Sapmaz et al., [2003). We
can easily solve a simplified model, where the applied force is concentrated in the
center (see Fig. [4.7h). In this case the tension is defined by FY° = 2T cos(f),
where 6 is the angle between the nanotube and the vertical axis. Expanding this
in terms of the length of the nanotube L and the distance between the clamping
points W we find that

_ RS R R R

DC
f2cos(0)72 %72\/@_ /335

Changing the problem to a uniformly applied force only changes the slack prefactor

(4.6)

(Ustiinel et al., 2005).

Fbe
T = 4.7
V24s (4.7)
The resonance frequency in the catenary regime is then:
cat _ Fgljc 7’L Cé (48)

oo T 1/ 24s (/965 &
To calculate how the resonant frequencies change in the transition from the

bending to the catenary regime, we use the corrections calculated by Sapmaz et al.

(2003) to the resonant frequencies in the bending regime for the fundamental mode

(Eq. [2.28),
224
= ,/ +0. 28T,/ (4.9)
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Substituting the expression for 7' from Eq. [£.7 we arrive at

224 [EI C’ 1 9
cat — 7 [0 4 0.98—=2—, | —— VPC 4.10
ST\ T e \ BT e (4.10)

Thus, in the transition region the resonance frequency depends quadratically on
the gate voltage.
The transition point is determined by equating the induced tension T to the

force produced by the flexural rigidity EI/L? Setting T = EI/L? gives us the

2E1+/24s
yhe = |7/ 4.11

For a typical slack of 1% that corresponds to a DC voltage of ~ 0.15V. This

transition gate voltage

relation is shown in the lower curve in Fig. 4.7c.

Elastic regime

In the elastic regime, the force is comparable to the extensional rigidity of the
nanotube, F¢ ~ FA, and the length constraint is lifted. In this limit, slack is
negligible compared to the elongation of the nanotube, and thus the modes are
unaffected by the amount of slack in the system. In the absence of the length con-
straint the even harmonics of the in-plane modes return to their original shape by
losing the two additional nodes. This process is exactly opposite to that illustrated
in Fig. [f.6p, and it also requires an even-odd mode crossing.

To calculate the resonance frequencies in this regime we still use Eq. for a
string under tension. Equation however, needs to be recalculated for the case
of the nanotube with extension. This case is illustrated in Fig. [£.7p. The tension

in the nanotube is still defined by equation F?¢ = 2T cos(6), where cos() is given
L+2AL )27(%)2

(5)?

by ( , where the elongation of the tube AL is defined by the Hooke’s
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law AL/L =T/(EA). Putting it all together, we get

FPC = 2T cos(f) = ZTJ <L+2AL()2); (5)

L+AL+WL+AL-W / T

Since in the elastic regime s < AL/L, the equation reduces to

T BA\G o2
FPC—T 81—~ = (8) FRC3 (4.13)

The resonance frequencies are still given by Eq. [4.4] and they reduce to

_m™m (EA)% FDC%

n = 4.14

For the realistic profile, the derivation is similar and the resulting resonance fre-

quencies are (Ustiinel et al.| 2005, [Sapmaz et al., [2003)

6 L

6 g

elast _ T (5>3 (BA)S /pct _ ™ (50/)3 (EA)s ypes (4.15)

n L \3 61t

Even though the resonance frequency, as expected, does not depend on slack,
the transition point from the catenary to elastic regime does. The transition be-
tween the catenary and the elastic regimes occurs when the elongation of the

nanotube under tension is comparable to slack. Substituting 7'/(EA) = s into Eq.

4.13| with correct coefficients, we get that the transition occurs at

2(2)* pa

INTSS

(4.16)

For 1% slack, this corresponds to around 35V. Thus, the elastic regime is not
likely to be relevant for a typical device. The three regimes are shown in Fig.

in the slack gate voltage space.
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Spring constants

We can alternatively express the above results in terms of the spring constants of
the resonator. For small tube displacements we can approximate the CNT by a
harmonic oscillator and define a spring constant k& = mw?. In the bending regime

the spring constant for a standard device described in table is

4 4
fpend — TaBI=02x 10_4§Zm/1\f (4.17)
1
In the catenary regime the spring constant is
2
kgt = Wg) 98 VPO = 0.2 x 10740% VP /N (4.18)

In the elastic regime the spring constant is

2
kzlast _ <7TZ) <006Cé /—EA)2/3 ‘/gDC4/3 =927 X% 10—4n2 vaDC4/3 m/N (419)

Expectations for a typical device

Having derived the analytical expressions for all of the regimes, we can estimate
what the dispersion curves look like for a typical device. We ignore the elastic
regime, as it is not achievable in our experimental setup, and are left with the
bending and catenary regimes (Eqgs. , . To approximate the transition region
we add the spring constants for the bending and the catenary regimes. This
approximation seems valid since in the transition region both the bending restoring

force and the elastic restoring force are relevant. The resulting resonant frequency

is then w = \/(k:bend + k@) /m. Using Eqs. |4.17| and 4.18| we arrive at

Wp = \/w};endz + w;aﬂ = \/w};endQ +a VgD02 (4.20)
where a = @%. Figure = presents the dispersions for the first three modes

calculated in this manner for device described in table .1l
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Numerical simulations

Ustiinel et al. have performed numerical simulations for this system using a finite

element model. A discretized nanotube was placed in a standard potential (Eq.

29):

U= ;/OL (EAEQ(Q:) + R]ii) + Tz(x)) dx (4.21)

where, as we remember from section 2.3 EA is the extensional rigidity of the
nanotube, FI is the flexural rigidity, € is the local strain, R is the local radius of
curvature, FPC is the DC force on the nanotube, and z is the vertical displace-
ment. For each given DC force and slack this potential is minimized by varying
the profile of the tube and recomputing the local strains and radii of curvature
until the “relaxed” profile is found. To compute the resonant frequencies a force
constant matrix K;; = 0?U/0x;x; is computed and diagonalized (for more details
see [Ustiinel et al|(2005)). The basic results are shown in Figs. and and
C.

Fig. shows the behavior of resonances as the slack is increased. As de-
scribed in the beginning of the section, slack only has an effect on the even harmon-
ics of the in-plane vibrational modes, which increase their frequencies by acquiring
two additional nodes and become nearly degenerate with the corresponding out-of-
plane modes. Fig. and ¢ show the predicted dispersion relation for a typical
nanotube (b) and for a typical nanotube with several values of slack (c). Since the
tension in the the nanotube scales as s'/* (Eq. , the voltage axis was scaled
by (1%/s)** to collapse all the curves onto each other. We see that all but the
the smallest values of slack (0.25% — marked by the crosses) collapse onto a single
curve. The deviation for small slacks is due to the tube entering the elastic regime

sooner. Overall, the results from the numerical simulations agree with our simple
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model. The results of the calculations using the simple model and the numerical

simulations, shown in Figs. and b, respectively, are indistinguishable.

4.5 Model comparison with data

Having developed a model of the CN'T resonator we can now go back to the data,
which presented in Figure Comparing with Figures and [4.9b, we see good
qualitative agreement with predicted dispersions. All resonances start dispersing
parabolically, continuing into the linear regime as the gate voltage is increased.
For the lowest resonance in Fig. we also observe an w ~ V3 frequency
dependence at large gate voltages. The frequency dependence of the resonances
are thus in good qualitative agreement with theoretical expectations. The range
of frequency that we find (5MHz — 350MHz) is also within the expected range for
the expected distribution of lengths (1ym — 2um) and diameters (Inm — 3nm).

We do, however, often find that the resonances are lower in frequency than
predicted by the theoretical calculations. One possible source of this discrepancy
could be additional mass coating of the CNT, for example, due to contaminants
from the CNT growth or processing.

To see if the model describes the dispersion accurately, we fit the measured
dispersion to the analytic dispersion relation presented in the previous section (Eq.
. We have three fitting parameters: the zero gate voltage frequency w9, the
linear dispersion coefficient a, and the gate voltage offset V{). The results of the fit
with the fitting parameters are presented in Fig. [£.9¢. We see that the majority of

the resonances are described well by this model.
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Figure 4.9: Qualitative data comparison with the theoretical model. (a),(b)
Detected current (plotted as a derivative in color scale) as a function of gate
voltage and frequency for two devices. The insets to the figures show the extracted
positions of the peaks in the frequency-gate voltage space for the respective color
plots. A parabolic and a Vg/ 3 fit of the peak position are shown in red and green,

respectively. (c) A dispersion of a resonance fitted with the theoretical model from

section @



97

(a) (b)

~

~ =

= =

5 Yy

g g

[ =

= 4

g £
18

(d) e 'I'm'%{“_- A

Frequency (MHz)

Figure 4.10: Examples of resonance with anomalous dispersions. (a) The lowest
resonance exhibits sub-linear dispersion characteristic of the elastic regime. (b)
An avoided crossing.(c) A device showing an abundance of resonances. (d) A

devices showing a resonance with negative dispersion.
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4.6 Anomalous dispersions

There are, however, several types of dispersions that we observe that cannot be

explained by the above model. Typical representatives of such types are shown in

Fig. £.10]

Sub-linear dispersion

In the first class of devices (Fig. [£.10), the resonance shows a sub-linear (V,2/%)
dispersion behavior characteristic of the elastic regime (see Eq. , which should
not be observable for the voltage of the experimental setup for a typical device.
It is accessible, however, for tubes with extremely small slack. As indicated in
Fig. [4.7, a CNT resonator could enter the elastic regimes at voltages as low as 5V
for slacks of 0.1%. Another possibility for a sub-linear dispersion is a non-linear
dependence of the potential of the tube on the gate voltage due to the charging
of dopants on the tube. If the time constant for the charge movement around the
tube is comparable to the time it takes to record one trace of the measurement,
the actual voltage that the CNT feels will be less than the voltage applied to the

gate, and the resonance will appear to saturate.

Abundance of resonances and avoided crossings

Some other anomalous dispersion examples include devices that show an abun-
dance of resonances (Fig. 4.10c). From our theoretical model and from numerical
simulations we expect 6 — 8 resonances in the measurement range of 5MHz —
200MHz. However, we do not expect all of them to couple to our measurement
scheme, thus observing a device with the number of resonance above 5 is surpris-

ing. Even though we do not know the exact origin of this behavior, one possible
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explanation is that the measured device consists of several tubes, and thus the
different modes come from the different nanotube resonators.

Another type of anomaly is the presence of avoided crossings (Fig. 4.10p) in
the mode dispersions. We could speculate that these crossing originate from the
mode degeneracies predicted by theory that are lifted when the symmetry of the
problem is broken. However, without further measurements we cannot say more
on the origin of this behavior. Both of theses effects reflect, though, that there
is a lot more complexity in the real system than in our simple model or in the

numerical simulations.

Negative dispersion

Another class of anomalous devices (Fig. 4.10d) exhibits negative dispersion. This
feature is extremely common in our devices. We have observed it for several sam-
ples made with method #1 and for all samples made with method #2 (section
whose low-gate-voltage dispersion was visible. One systematic difference between
the samples made with methods #1 and #2 is that the suspended portion of the
tube is typically slightly longer with the method #2 (2um — 3um) then with the
method #1 (1.25um — 2um). We explain why the length of the resonator plays a
role in this effect below.

Dispersions for four different samples that exhibit negative dispersion are pre-
sented in Fig. [£.11] We can explain this behavior by remembering that the CNT
resonator is vibrating in a force field with a non-zero gradient. This force gradient
is acting as an additional spring constant that is counteracting the restoring force
and thus effectively decreasing the spring constant of the resonator and softening

the resonance frequency. Remembering the DC force acting on the CNT, as de-
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Figure 4.11: Samples exhibiting negative dispersions. In (a) and (b) the reso-

nance is marked with an arrow for better visibility.
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scribed by Eq. we can derive that the additional spring constant acting on the

CNT resonator is

dFeDeg ic 1 2
ksoftening = dlz He = icg ‘/gDC (422)

Fig shows the calculated results for the catenary and bending regimes for
a fundamental mode of a typical device made with method two, using a simple
capacitance model for the CNT (this model will be discussed in more detail in the
next chapter). We can no longer use the arguments of adding spring constants to
approximate the transition from the bending to catenary regimes. For that reason
we show the effect of the electric field softening on both dispersions separately.
We see that in the bending regime, the magnitude of the decrease in resonance
frequency is comparable to the one observed in the measurements (~ 3 — 5MHz);
at higher voltages, in the catenary regime, the elastic force compensates for the

softening and the frequency increases.

4.7 Conclusions

In conclusion, we have successfully observed a mechanical resonance of a suspended
carbon nanotube. The device exhibits several vibrational modes, which disperse
symmetrically as a function of the DC gate voltage. To explain these dispersion
relations we model the suspended nanotube as a slack beam, to which we apply an
external uniform downward force set by the DC gate voltage. Depending on the
magnitude of the force, the nanotube can enter three different regimes: bending,
catenary and elastic. We can analytically solve for the resonance frequencies in each
of these regimes and predict the resulting dispersion curve. Alternatively, Ustiinel
et al. have performed numerical simulations of a slack nanotube system. The

analytical results agree very well with the numerical simulations and can explain
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Figure 4.12: Theoretical predictions for negative dispersion for both bending
and catenary regimes. The calculation was done for a typical nanotube resonator

device made with the method #2.
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the majority of the resonances. However, several features have been observed
that do not fit in this model. Several devices show an unusually high number of
resonances; several show avoided crossing types of behavior. Another set of devices
shows sub-linear dispersions indicative of the elastic regimes that should not be
observable at the experimental voltage ranges. Lastly, a large number of devices
exhibit a temporal decrease in frequency as the DC gate voltage is increased. We
propose a theory to explain these effects. However, further studies are needed to

fully understand these phenomena.



CHAPTER 5

ANALYZING CNT RESONATOR PERFORMANCE
5.1 Introduction

In this chapter we present an analysis of the measurement of a CNT resonator
device. First, we discuss the shape of the measured signal and present a fitting
procedure that allows us to extract the parameters describing the performance of
a resonator (section . In the following two sections we estimate the amplitude
of motion of the resonator (section and see how it changes with increasing
driving voltage (section |5.4)) (Sazonova et al., 2004). We finish the chapter with
two sections on the limits of the device performance. Section gives an estimate
of the resonator’s force sensitivity as it is cooled to lower temperatures; in section

[5.6] we estimate the limits on its operational frequency.

5.2 Fitting the resonance

Fig. shows the basic measurement result from the previous chapter: a mea-
surement of the mixing current, /2%, as a function of driving frequency, w, taken
at room temperature in vacuum. In order to understand the shape of this signal

we go back to Eq.[3.17, which we reproduce here for convenience:

IAw_ldG(

! C 7\ 1/
= 5q (G + Cy V) Vaa (5.1)

g

Here V4 and f/g are the AC voltages on the source and gate electrodes, respectively,

C, is the NT-gate capacitance, % is the transconductance of CNT device, and

z(w) is the NT’s amplitude of motion. The first term, which we refer to as IPeak,

describes the contribution to the current from the mechanical motion of the tube

104
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Figure 5.1: Resonances shown in Fig. in the previous chapter, fit to a
Lorentzian with an appropriate phase shift between peak and the background.
Extracted parameters (good to within 3%) are: (a) fo = 10.1MHz, Q@ = 50,
1Pk = 30pA. (b) fo = 5.1MHz, Q = 100, I**** = TpA. (c) fo = 55MHz, Q = 80,

1Pk = 6pA. (d) fo = 333MHz, Q = 81, IPe2k = 10pA.
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changing the tube’s potential. It is significant only near the resonance frequency
and we associate it with it the sharp feature in Fig. |5.1l The second term, IB%,
describes the contribution to the current from the direct electrical modulation
of the N'T’s potential by the AC gate voltage and is frequency independent, as
discussed in section [3.7} we identify the background signal with the second term.

Inserting z(w) from Eq. [2.4]into Eq. [3.17, we derive that IP**¢(w) and IB3%(w)

are given by

_1dG 20/@Q

[peak _ — 2 ~y/DCY; 9
(W) 2 dq Cg‘/g qu w 2)2 w/wo 2 (5 )
(- (2)) + ()
1dG , - -
1P (w) = EchCngVSd (5.3)

Naively we would just add these terms to get the total current; however, looking
back at Eq. [3.5 we notice that its two terms have very different physical origin.
The first comes from the electrons driven on and off of the tube by the change
in the potential in phase with the mechanical motion of the CNT. The second
originates from the electrons moving on and off of the the tube due to the change
in the potential in phase with voltages applied to the gate and source electrodes.
In principle, there is an arbitrary phase shift between these two terms, defined by
the exact contact resistances and capacitances of the sample, which causes them
to interfere (Knobel and Cleland, |2003)). Therefore, when calculating the total
current, we must add the peak and the background current contributions with a

phase shift A¢ between them. The resulting total current is

_1dG |, ez 90 (Agb + arctan (iig;g)) 4 Cgf/g Vi (5.4)

T @) ey

Depending on the phase difference, the line shape of the signal changes from the

I(w)
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Figure 5.2: The calculated lineshape of the signal at four different values of the

phase difference. From top to bottom, A¢ = 0, A¢p = 37/6, Ap = Tn/6,A¢ = .
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peak (A¢ = 0) to the heart-beat shape (A¢ = 7/2) to the dip (A¢ = 7). Fig.
illustrates the possible lineshapes for different phases. The height of the peak,

IPeak defined as the height of the peak if A¢ = 0 is

1dG
]peak ETQO,VDC%dZO (55)

From discussion in section [3.7, we know that the background current changes
with driving frequency due to capacitive losses and circuit resonances. For the
frequency interval of the resonance we can approximate that frequency dependence

by a straight line.
1dG

[BG< ) 2 d

—CyVyVia (A + Bw) (5.6)

Using these arguments, we fit the measured current to the following functional

form

H cos (arctan ( + Agb))

¢<1—<f0>2)2+<r;;>2

Here A, B, H, fy,I", and A¢ are five independent fitting parameters. A and B

I®(f) = A+ Bf + (5.7)

are the intercept and the slope for the background. H controls the height of the
peak on top of the background, f; and I' control the position and the width of
the peak, respectively, and finally A¢ controls the lineshape of the resonance. We
transform these fitting parameters into experimental parameters, such as the center
frequency, fy, the normalized linewidth, Q~!, the height of the peak, IP*** and

the background, IB¢, in the following fashion

Q=1L
peak HQ (58)
IBG — A + Bf(]

The black line in Fig. indicates the fit to the data. As we see, the fit works
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very well for all the different shapes presented; the fits are good to within 3%.E|

The extracted parameters for Fig. [5.1] are given in the figure caption.

5.3 Estimating the amplitude of vibrations

Having developed a procedure to fit the resonances, we can extract and analyze
the important mechanical parameters of the resonator. The resonance frequency fy
and its dependence on the DC gate voltage was discussed in detail in the previous
chapter (Chapter ; the quality factor @), describing the degrees of losses in the
resonating system, will be discussed in the next chapter (Chapter @; and in the
remainder of this chapter we concentrate on the information we can extract from
the magnitude of the peak and background currents, B¢ and IPeak,

To begin, we use Eq. and Eq. to extract the amplitude of motion of
the resonator. As a first step, we calculate the relative change of capacitance on

resonance from the peak current using Eq.

G _ 211y "
Ce %VgDCVSd

We can estimate the transconductance dG/dq analogously to the analysis for the
non-suspended CNT device (section from the DC current measurement; al-
ternatively, we can use the measured value of the background current. The latter
takes into account the signal variations due to circuit resonances and capacitive

losses. The value of the relative change of capacitance on resonance is then

Gy _ 1™ (wn) T
C, IBG(wy) VPC

(5.10)

In order to determine the actual amplitude of the tube’s displacement on resonance

~ measured
Cy ) Cy
0= =2 -5 (5.11)
( Cg Cg

! For a typical fit, the standard deviation of ([measured /ptotal( £y 1) ~ 3%
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we need to know Cy and Cg. A simple model of a straight beam above an infinite

plane gives the following dependence:

__ 4megL
Cg ~ In(2Z/ro)

(5.12)
Cl~CylZ

Where L is the length of the tube, 7y is the tube’s diameter and Z is the distance

to the gate. Using this model, we arrive that the vibration amplitude is given by

C, 1795 () V,
20 = FgZ = ]B(}i(u)o)‘/gDCZ (513)

From chapter [3| we recall that Z is approximately 500nm for our devices. Cal-
culating the vibration amplitude for one representative resonance curve, presented

in Fig. 5.1, (measured at V, = 7mV) leads to Cy/Cy = 0.3%, and z ~ 10nm.

5.4 Peak amplitude dependence on the driving voltage

Figure ,b show the dependence of the peak current, /°**% and the peak’s full
width at half maximum (FWHM) on the driving voltage of the resonator, f/g, for
one device. For low driving amplitudes the response on resonance is linear in f/g
and the FWHM is roughly constant. As the \N/g is increased, the response saturates
and the response peak widens. For some devices, there is also a dramatic change
in the signal shape observed at these high driving voltages (Fig. [5.3p). Instead of
a smooth Lorentzian dip, the system develops a hysteretic transition between low

and high amplitude states of oscillation.

Linear regime

To understand these results, we first address the linear response regime. From Eq.

[5.13] we know that the peak current is proportional to the amplitude of oscillation
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2o and from Eq. we know that the driving force is proportional to the AC gate
voltage f/g. Thus the linear relation between the peak current and the driving
voltage results in the linear response of the resonator. Consequently, we estimate
the effective spring constant for this resonator from the slope of the amplitude vs.
driving force curve. For the device in Fig. [5.3¢ it is 4 x 107*N/m. This is consis-
tent with the spring constants for the bending and catenary regimes calculated in
section [£.4] However, we need to remember that experimentally we measure the

force spring constant

Fe
kflorce _ 71@ _ Hk}iend,cat (514)

<0
by measuring the vibration amplitude dependence on the driving voltage, and not

the resonator spring constant
2
kzend,cat mwzend,cat (5 ) 15)

as it was defined in section (4.4, Here 6 is the coupling coefficient that accounts
for the fact that the CN'T does not move purely in the z-direction, in which case 6
would be one. Generally, the coupling is different for different modes. We, however,
assume perfect coupling throughout this thesis.

Finally, we can calculate the force sensitivity of the device at room temperature.
The smallest detected signal was at a driving voltage of f/g ~ 1mV. Using Eqs.
and above yields a motion of ~ 0.5nm on resonance and a force sensitivity of
~ 3fN/ V/Hz . This is within a factor of ten of the highest force sensitivities ever
measured at room temperature (Jenkins et al., 2004, Stowe et all [1997)). We will
discuss the limiting factors and the projections of the force sensitivity in the next

section.
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Nonlinear regime

As the amplitude of the oscillation is increased, we expect that non-linear effects
due to changes in the spring constant become important. It is well known that non-
linear resonators have a bi-stable region in their response-frequency phase space,
which experimentally results in a hysteretic response (Yurke et al., [1995). The
onset of non-linear effects in our case corresponds to driving voltages of 20mV.
Assuming the same parameters as above yields the amplitude of motion of 30nm.

Several possible mechanisms, such as beam elongation, clamping, etc., can be
responsible for the non-linear behavior. In NEMS the non-linearity is typically
due to the elongation of the resonating beam (see section , and the onset of
non-linearity is a well known parameter (Postma et al.) [2005). In our devices
the presence of slack compensates the elongation induced by the driving forces
corresponding to the onset of non-linearity.

One other possible reason for this behavior is the direct dependence of the
resonance frequency on the driving force, since both driving and tuning are done
by controlling the voltage on the gate. From Eqgs. [4.8|the spring constant of the
resonator in the bending and catenary regimes depends on the gate voltage. That
means that the resonator’s spring constant is modulated by the driving voltage

around some central value defined by the DC gate voltage :
(Vi) = ko(VPO) + k(Vy) (5.16)

The equation of motion [2.3] for the resonator (Eq. [2.3]) is then modified as follows

mz(t) + b(t) + koz(t) + k(Fy cos(wt))z(t) = Fy cos(wt) (5.17)

This type of equation is usually referred to as parametric amplification, as a pa-

rameter of the system (i.e. its spring constant) is modulated. Without solving
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this analytically, we can estimate the magnitude of the frequency broadening due
to the driving voltage for the values corresponding to the onset of non-linearity
(20mV). For a typical resonance frequency of fo = 50MHz with a quality factor of
@ = 50, and with a typical dispersion curve slope of Af/AV:gDC = 10MHz/V, the

frequency modulation will be

Af

A p—
f=aym

y rnon—linear __
8 — 0.2MHz (5.18)

which is smaller than, but comparable with, the half maximum width of the peak
of fo/Q = 1MHz, indicating its possible importance. We will return to possible
mechanisms of non-linearity in chapter [6] Solving such equations is typically done
numerically, and even though this presents a very interesting problem it is out of
the scope of this thesis.

The exact cause of this hardening non-linearity is still subject to further inves-
tigations. We must also note that in all measurements of the hysteretic switching
the traces were measured by sweeping the gate voltage, not the driving frequency.
In such a case the driving force is larger on the high frequency side of the reso-
nance (higher gate voltage), and smaller on the low side of the resonance (lower
gate voltage). While this inhomogeneous measurement does not affect the presence

of non-linearities and bi-stability, it might affect the exact shape of the resonance.

5.5 Calculations of force sensitivity

The ultimate limit on sensitivity is set by the thermal fluctuations of the CNT

oscillator
4kbend,cat k’BT
WOQ

hermal
St =
F

(5.19)
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where kg, T are the Boltzman constant and temperature, respectively. For a typ-
ical device (table , this translates to 15aN/y/Hz. The observed sensitivity is
1pN/v/Hz, 50 times worse than this limit.

To understand the origin of this poor sensitivity, we first consider the sources
of noise in the system. The experimentally determined value for the current noise
through the device was \/ﬁ ~ 0.3 £ 0.05pA /v/Hz. Many sources of noise could
be contributing to that value (Cleland and Roukes, 2002). We identify two major
possible sources: the 1/f noise associated with the movement of charges in the
substrate, and the thermal Johnson-Nyquist noise. According to measurements of

Postma et al.| (2001, 1/f noise

SHT = A2 /f (5.20)

ave

is comparable to the thermal noise at the experimental frequencies f = Aw /27 =
10kHz. The major source of noise in this system is the thermal Johnson-Nyquist
noise

Gthermal — 4L T@ (5.21)

where G is the conductance of the CNT device. At room temperature for a typical
device (table this corresponds to 0.4pA/v/Hz, in excellent agreement with our
findings. We therefore conclude that the dominating source of noise in our devices
is the thermal electronic Johnson-Nyquist noise.

We can make a model of the theoretical force sensitivity in an CNT resonator.
Using Eqgs. and we can rewrite Eq H in terms of the driving voltage V

1dG (VPeC!)?
2 dq kbend cat

[peak

QVia Vs (5.22)

To avoid any additional forces on the resonator we keep Vig < Vg.

2 Increasing Vg increases the peak current and so the sensitivity of the device.
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Figure 5.4: Calculation of a projected force sensitivity. (a) The gate dependence

of the conductance for a transistor CNT device (Gnr(V,’¢)), calculated for typical

parameters. The voltage at which the maximum slope is achieved is marked by a

gray circle. (b) The gate dependence of the conductance for a CNT device in the

classical dot regime (GQ(VgDC)), calculated for a typical parameters. The voltage

at which the maximum slope is achieved is marked by a gray circle.

(c) The

projected force sensitivity calculated for three different regimes: FET, classical

dot, quantum dot for a typical device is shown as solid black line. A dashed black

line indicates the thermal vibrations limit on the sensitivity. The force sensitivities

recently achieved in the NEMS community are shown as orange circles.
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Equation then leads to the following expression for the force sensitivity Sg

B 2\/5’[_Bk,bend,cat

S
fos

(5.23)

where S; is the current noise in the device and B is the bandwidth of the mea-
surement.

To estimate the theoretical limit on force sensitivity, we estimate the limits on
the CNT conductance G and transconductance dG/dg.

The CNT’s conductance consists of two parts: the contact’s conductance G,
and the CNT’s bulk conductance Gyt that arises mostly from scattering from
acoustical phonons (Kane et al.l [1998)). From chapter [1| we know that for perfect

transmission G, is given by the Landauer-Biittiker formula
G, =45 (5.24)
c h .

In real devices conductance is typically smaller. For the remainder of this chapter
we assume the contact resistance of G. = 1/100kQ2. For a semiconducting CNT,

the bulk conductance in the p-regime is given by

2 DC /2
DCy iLO (Vg /a)
Gar(Vy) =4 h L1+ (VPC/a)?

(5.25)
where a = 8e/ 37rDC’é, and [y is the phonon mean free path. For a detailed analysis
and derivation of this formula see Rosenblatt| (2005). The total conductance is

given by the 1/G = 1/G. + 1/Gnt. Figure illustrates the behavior of the

CNT conductance for some typical device values (table [L.1). We estimate the

However, following the arguments in section , Via creates an additional force
on the CNT resonator of F«ta» = 1 / QCéVgDCf/Sd at the frequency w + Aw, result-
ing in an additional motion at that frequency. Since the width of the resonance
peak (typically on the order of f,/@Q ~ 300kHz) is larger than Aw/27 = 1kHz,
this additional force could affect the resonance and, perhaps, lead to additional
dissipation.
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maximum transconductance of the device, dG/dg, by calculating the maximum
slope of this graph (marked with the grey circle) and using the fact that

Cfg _ dégcé (5.26)
Using these equations in conjunction with Eq. we calculate /Sy = 1.5fN/v/Hz,
in good agreement with our measurements.

Decreasing temperature affects both the conductance and the transconductance
of the CNT. While the contact conductance does not change with temperature,
the phonon mean free path increases with the inverse of temperature, and so does
the bulk conductance (Zhou et al., 2005, Rosenblatt, |2005). From Eq. we see

that the transconductance has the same temperature dependence

dG 1

At lower temperatures the CNT enters into a classical Coulomb blockade
regime. By this point the bulk contribution to resistance is small and the overall
conductance is determined by the contacts. The gate-voltage dependence of the
conductance is modulated by the individual charging events of the CNT dot that

manifest themselves as Coulomb oscillations

VDC -2
Go(T,VPO) =G (cosh (OZZB? )) (5.28)

where o ~ 6 (Zhou et al [2005) is a constant relating voltage and energy scales.
At even lower temperatures the transport through the CNT happens through in-

dividual energy levels of the CNT dot and the CNT is in the quantum dot regime.

AFE aeVPC\\ 2
DCy _ g
ColT V) = Cep <cosh< o )) (5.29)

where AF is the average level spacing. An example of a classical Coulomb oscilla-

tion at 10K is presented in Fig. [5.4pb. Again, we estimate the maximum transcon-
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ductance by calculating the slope of Gq(T, V:gDC). From the above equations we

can derive that in the classical dot regime

dG 1
and in the quantum dot regime
e 1

Assuming that Johnson-Nyquist noise is the only noise source in the system,
we calculate the expected force sensitivity for a typical CNT resonator device as a
function of temperature. The result is shown in Fig. as a black solid line. A
dashed line indicates the limit on sensitivity set by the thermal vibrations of the
resonator. We see that at low temperatures (~ 1K), the sensitivity should increase
by orders of magnitude. Force sensitivities below 5aN should theoretically be
attainable. This is comparable to the highest sensitivities ever measured (Stowe
et al., 1997, Mohanty et al., 2000, [Stipe et al., 2001]), indicated on the graph
with orange dots. Additionally, sensitivity may increase due to the temperature
dependence of the quality factor Q(7"). We will discuss the quality factor and its

temperature dependence in detail in the next chapter.

5.6 Frequency limits

One of the goals in the NEMS community is to push the limit of the operating
resonant frequency. Resonators with fundamental frequencies up to 1.5GHz have
been fabricated (Huang and Roukes, [2003). The highest resonance measured so
far in our devices was at 400MHz. In this section, we estimate the inherent upper
bound on the resonant frequency (not limited by the external circuit) that we can

detect with our measurement technique.
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One way to increase the resonant frequency in our devices is to decrease their
length (see Eq. , . Then, in order to calculate the upper bound on the
resonant frequency we calculate the lower bound of the N'T’s length.

Recall Eq. [5.22} in order to find the lower bound on the device length, we
calculate the maximum possible resonant current as a function of the length of the
device and find for which lengths the current is less than the noise in the system
(see Fig. [5.6p).

In the FET regime the driving voltage is not bounded and the maximum res-
onant current is bounded by the total change in the conductance of the device in
the experimentally accessible voltage range. The mixing voltage is not bounded,
in contrast to the previous section, as the goal now is to maximally drive the res-
onator. For our calculations we used the driving and mixing voltages of 1V. For
the case of the Coulomb blockade, the driving voltage and the mixed voltage are

bounded by the charging energy of the dot.

V, ~e/C, (5.32)

In this case the dot is always in the classical regime. Using Eqs. [5.22] [5.25] [5.28],

and we calculate the maximum resonant current from the device and obtain

the minimum allowed length by equating it to the noise in the system.

IR 400 = \/S1B (5.33)

Before presenting the results of the calculation, let us note that only the bending
regime is relevant for the calculation for the short devices. This is illustrated in
Fig. [5.5] where we calculate the value of the spring constants as a function of
device length and gate voltage (panels (a) and (b)), and the transition gate voltage

between the bending and catenary regimes (panels (c¢) and (d)). We see that for
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shorter CN'T resonators the bending regime dominates and the catenary regime
is not accessible with operational gate voltages. Ignoring the catenary regime, we
perform the calculation outlined above and obtain the minimum device length as
a function of temperature. Figure |5.6p presents the result. We see that at room
temperature, detecting the motion of a resonator with lengths down to 160nm
should be possible. At low temperatures, in the Coulomb blockade regime, the
minimum length decreases even further, down to ~ 10nm.

A 200nm long CNT resonator has the fundamental resonant frequency of ~
2GHz (Eq. . This is already higher than the highest resonant frequencies ever
measured with NEMS (Huang and Roukes, 2003). A 30nm long CNT resonator
has the fundamental resonant frequency of ~ 150GHz (Eq. . It has been
shown that the electronic part of the current detection setup can be extended to
frequencies of 50GHz (Rosenblatt et al., [2005)), so pushing the frequency limits of

the resonator at least up to 50GHz seems feasible.

5.7 Conclusion

In this chapter we have analyzed the performance of a CNT resonator. After
understanding the details of the shape and amplitude of the current response signal,
we developed a fitting procedure that allows us to extract the three parameters
that describe the performance of a resonator: the resonant frequency, the quality
factor, and the amplitude of the induced resonant current. Using a simple model
for NT-gate capacitance, we estimated the actual amplitude of motion of the CNT
resonator to be on the order of nm. We further studied the response amplitude
dependence on the driving amplitude. For low driving voltages, the CNT resonator

operates in the linear regime with an effective spring constant of ~ 4 x 107*N/m.
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At higher driving voltages the resonator enters into a non-linear regime exhibiting
a bi-stable behavior.

We calculated the force sensitivity of our device to be 3fN/v/Hz. We find that
our measurement is limited by the thermal electron noise in the CNT. The ultimate
limit on the sensitivity is given by the thermal motion of the CNT resonator and
is a factor of 50 smaller. Finally, we estimated the bounds on force sensitivity and
resonant frequency of the CNT resonator as a function of temperature. We find
that at temperatures of ~ 1K, force sensitivities on the order of several aN/ VHz
should be attainable. In the calculation of the upper bound on the resonant fre-
quency we limit ourselves to the fundamental harmonics and switch the calculation
into the calculation of the lower bound on the length of the device. We find that at
low temperatures, devices with lengths down to 30nm, corresponding to resonant

frequencies of ~ 150GHz, should produce a detectable signal.



CHAPTER 6

QUALITY FACTOR OF CNT RESONATORS

6.1 Introduction

One of the most important parameters characterizing a resonator is the quality
factor, @), the ratio of the energy stored in the resonator to the energy lost per cycle
due to damping. Maximizing () is important for most applications. In the NEMS
community, Q’s up to 250,000 have been achieved (Yang et al., 2000) and @’s in
the range of 10,000 — 100, 000 are typical. As the devices are miniaturized, their
respective (Q’s decrease as shown in Fig. as a graph of () vs. volume. This linear
scaling of the )’s with the surface-to-volume ratio has been attributed to losses
associated with dissipation at surfaces, giving promise for high quality factors from
well-terminated structures such as carbon nanotubes (Ekinci and Roukes, 2005).

Previous measurements on larger MWNTs and ropes of SWNTs yielded @’s in
the range between 150 to 2,500 at room temperature (Gao et al.; 2000, [Poncharal
et al., 1999, Purcell et al, 2002, Reulet et al.. 2000). A comparison of the previously
measured @ and a () measured from one of our samples (Fig.[5.1h) with the NEMS
Q’s is presented in Fig. [6.1n. We see that surprisingly the CNT resonator Q
continues nicely the trend established by the NEMS and MEMS. We, thus, would
like to understand the dissipation in CNT resonators.

In this chapter we investigate the possible reasons for such behavior and the
overall values for the quality factors, and look for the main dissipation mechanism.
We first study the dependence of the quality factor on various resonator para-
meters, such as air pressure, temperature, device conductance, DC and AC gate

voltages at room temperature (section [6.2)), and then we study the temperature

125
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dependence of the system (section , and finally we build an empirical model

for the findings (section and correlate it with various theoretical dissipation

models (section [6.6)).

6.2 Room temperature results

We measured 30 different devices, each producing between one and eight resonant
modes, making a total of 120 vibration modes. Devices were created with three
different methods (for details see section illustrated in Fig. . Method
#1 results in a CNT suspended over a trench, clamped by the adhesion to the
Si04 substrate; method #2 results in a suspended CNT clamped by the electrical
contacts; and method #3 results in a suspended CNT on top of the contacts,
clamped by the adhesion to the contacts. The electrical resistance of the devices
varied from range of 60 to 800kS2.

Following the procedure described in section [5.2] we extracted representative
quality factors for each of the measured resonances at room temperature. Figure
shows the resulting quality factor distribution. We see that () is in the range
of 40 — 200, with the maximum of the distribution around 75.

As a first step in understanding the dissipation in CNT resonators, we inves-
tigate the quality factor dependence on various parameters at room temperature.
We start with the ambient conditions and device characteristics: the chamber pres-
sure, the electrical resistance of the device, and the fabrication method. We then
proceed to the characteristics of a particular resonance: the mode number, the
driving force (i.e., the driving voltage), and the tension in the tube (i.e., the DC
gate voltage).

As illustrated in Figs. and b, we do not observe a correlation between
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Figure 6.1: CNT quality factor comparison with NEMS. (a) NEMS quality factor

as a function of the device volume on the log scale. A dashed line is a linear fit.

(b) Distribution of the quality factor values measured among the 120 resonant

modes of 30 CNT devices.
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(@ and the electrical resistance of a device. We also see that the quality factor
distributions for devices with different geometries are very similar. The respective
quality factor averages for each geometry are 62 4+ 35, 87 £ 55 and 75 + 72, all
within a standard deviation of each other.

Fig. 6.2c shows the dependence of quality factor on the chamber pressure for
one device. At experimental vacuum levels (< 107%torr), @ is independent of
pressure. Only at higher pressures does () start to decrease. The resonance is no
longer observed at pressures above 10torr.

A large fraction of the measured devices had more than one resonance mode.
An example of that is illustrated in Fig. [6.3h. The figure shows the dispersions for
all the different vibration modes of one device with the respective () factor values
written on the corresponding mode. We see that even though the dispersions of the
two neighboring modes look alike (modes #2 and #3), their quality factors are very
different Q(2) = 51 and Q(3) = 98. Numbering the resonance modes consecutively,
starting from the lowest frequency mode and then plotting the measured () factor
vs. the mode number, results in the plot shown on the inset of Fig. |6.3p. Despite
the large fluctuations in the quality factor, there is a trend towards higher quality
factors for higher frequency modes. To confirm the existence of this trend, we fit
a line through the data, as shown on the inset of Fig. [6.3b. The resulting slope is
~ 5, or, normalized by the quality factor of the lowest mode, 0.012 = 12%/mode.
Performing the same analysis for all of the devices with more than two resonance
modes, yields a distribution of the () vs. n shown in Fig. [6.3b. We see that the
distribution has a peak around 20%/mode and a width of around 10%/mode,
indicating that there is a correlation between the mode number and the quality

factor. However, we also see that this behavior is not present for all devices, as we
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can observe another peak in the slopes distribution around —5% /mode.

Figures [6.4] a and b show the quality factor and the corresponding resonance
frequency as a function of the DC gate voltage for two devices. Both devices have
complicated dispersions (see section and a non-trivial relation between the
quality factor and the DC gate voltage.

The device in Fig. shows one resonance mode that exhibits negative dis-
persion in the range of 0 — 1V, then continues linearly until it changes slope at
about 3.5V. The @) dependence on the DC gate voltage changes as the dispersion
goes through these different regimes. In the negative dispersion interval, the () ex-
hibits a lot of scattering and slowly increases. In the linear part of the dispersion,
the ) decreases and comes to a minimum roughly at the point of the inflection,
where the () starts to increase dramatically.

The device shown in Fig. [6.4p (see also Fig. 4.11d) has two resonant modes
(shown in solid and open circles) that have an avoided crossing. The crossing is
particularly well seen on the negative gate voltage side. The frequency of the lower
resonance mode increases parabolically and then linearly with the DC gate voltage
until it hits the upper resonance mode at about 3.5V. At this point, the slope of
the lower resonance mode changes to the slope of the upper mode and vise versa.
At the same time the quality factors of both the lower and the upper resonance
modes do not change with the gate voltage until the point of the anti-crossing,
where the () of the lower mode increases to the value of the upper mode, and the
value of the upper mode decreases to the value of the lower mode. In other words,
the resonances “exchange” the magnitudes of their quality factors.

Finally, Fig. [6.5] reproduces Fig. [5.3, which shows the measured quality factor

dependence on the driving voltage. As discussed in section [5.4] at low driving
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Figure 6.4: Quality factor gate voltage dependence at room temperature. (a,b)
Resonance frequency (upper panel) and the quality factor (lower panel) vs. DC
gate voltage for two different devices. The quality factor changes its behavior at

the gate voltages corresponding to the inflection in the frequency curve.
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Figure 6.5: Quality factor dependence on the driving voltage. (a), (c), (d) @

and the height of the resonance peak for several devices are shown in red open

squares and black solid squares, respectively, as a function of driving voltage.

Linear behavior is observed at low voltages, but the peak width decreases and

the height of the peak saturates at higher driving voltages. (b) Trace of detected

current vs. frequency with the background signal subtracted for a device at two

different driving voltages, V; = 8.8mV and V, = 40mV. The solid black line is

a Lorentzian fit to the low bias data. The traces of the current as the frequency

is swept up and down are shown in purple and magenta, respectively. Hysteretic

switching can be observed.
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voltages, the quality factor is independent of the driving voltage, despite the large
scattering in the data; at higher voltages, non-linear effects become important and

the resonant peak shape deviates from a Lorentzian.

6.3 Temperature dependence results

The temperature dependence of the quality factor can give further insight into
the origin of losses in our system. As the temperature of the system is lowered,
the overall behavior of the system changes in a very complex manner, as illus-
trated in Figs. [6.6] [6.9] We observe temperature dependence in all measurable
quantities: the resonant frequency dispersion curves, the amplitude response to
the increasing driving amplitude, and the quality factor dependence on the gate
voltage. We first address the overall behavior of the system and then describe in

detail the temperature dependence of the quality factor.

Resonance frequency

Figures [6.6 and b show the resonant frequency dispersion curves at different
temperatures for the two devices shown in Figs. For the device in panel a, we
see that the zero gate voltage frequency increases as the temperature is lowered; at
the same time, the shift to the linear dispersion is pushed to higher and higher gate
voltages. Empirically, we can describe this as a resonant frequency increase in the
bending regime with temperature, illustrated in Fig. [6.6c. For the device in panel
b, there is no observable change in the resonance frequency as the temperature is
lowered. Figure shows the resonance frequency as a function of temperature
for several other devices at a particular value of the DC gate voltage and driving

voltage. Here again we observe a consistent, but variable in magnitude, shift to
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Figure 6.6: Temperature effects on the dispersions. (a), (b) Resonant frequency
dispersion curves taken at several different temperatures for the devices shown in
figures and b. For the device in panel a, we see that the zero gate voltage
resonance frequency is shifting upwards as the temperature is decreased. (c) A
schematic for the bending mode frequency shifting upwards with lowered tempera-
ture and the catenary regime frequency staying constant. (d) Extracted resonance
frequency for some value of the DC and driving gate voltages for all the measured

devices. Note the constant upward shift with decreasing temperature.
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higher frequencies as the temperature is lowered.

Quality factor dependence on the gate voltage

Figure|6.7| shows the corresponding quality factor dependence on DC gate voltage.
For the device in panel a, we again observe two major trends. The first is an overall
increase in the value of (). The second is a consistent shift to higher gate voltages
of the prominent features in the @ vs. VgDC dependence, such as the peak in the )
vs. V, curve.

Since both the dispersions and the @ vs. VgDC dependence change with tem-
perature, we would like to correlate the two. In the previous section we saw that
the quality factor changed its behavior at points where the dispersion behavior
changed, i.e. at the inflection points. We can bring out this correlation by plot-

ting side by side the loss and the derivative of the dispersion with respect to the

dfo
) dngC .

gate voltage This plot at different values of temperature for both of the
devices is shown in Fig. [6.8] For simplicity, we show only the positive gate voltage
side. Concentrating on panel a, we see that indeed the loss mimics the qualitative
behavior of the resonance frequency dispersion curve, for all of the values of tem-
perature. As the peak in the derivative shifts to higher gate voltages, so does the
peak in the loss.

For the device in panel b, we also see an overall increase in the values of the
quality factor, and perhaps a slight shift to the higher gate voltages of the crossing
position. The relation between the dispersion and the quality factor is again more
visible on the dispersion derivative and loss vs. gate voltage plot, Fig. [6.8b. Here

we see that the gate voltage where the quality factors are equal (VgDC ~ 3V)

coincides with the point where the two slopes are equal, which is also the point of
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Figure 6.7: Temperature effects on quality factor gate voltage dependence. (a),
(b) The corresponding @’s vs. DC gate voltage for the same two devices as in Fig.
[6.6k, b. While @ exhibits a complex dependence on both temperature and gate
voltage, we still notice an overall increase in the values at lower temperatures and

a consistent shift outwards of the prominent features in the dependence.
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Figure 6.8: Quality factor and the derivative of the resonance frequency disper-
sion. (a, b) The numerical derivative of the resonance frequency dispersion curve
(upper panel) and the corresponding loss (lower panel) vs. DC gate voltage for the
same two devices as shown on Figs. [6.4] for several value of temperature. We

see that the loss mimics the behavior of the derivative.
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crossing. The overall resemblance between the dispersion derivative and the loss

is quite evident.

Quality factor dependence on the driving voltage

Finally, Fig. shows observed changes in the quality factor dependence on the
driving voltage, f/g. We see that again there is an overall increase in the value of )
at lower temperatures. At the same time we see that while at room temperature )
is independent of f/g, at lower temperatures, the () develops a dependence on the
driving voltage that we have so far attributed to non-linear effects in the resonator
(section . The dependence is stronger for lower temperatures, such that at
lower temperatures the linear regime of a resonator becomes increasingly difficult
to attain. Figure and d show the same data as the loss dependence on the
driving voltage. We see that the loss, Q~!, varies linearly with I7g. The strength

of this dependence varies between the samples.

6.4 Extracting the quality factor dependence on temperature

Because of the complexities described above, assigning one representative value for
the quality factor at a given temperature is difficult. To eliminate the effects of the
DC gate voltage and driving voltage, we adopted three different procedures. The
first is extracting the representative value of () from the driving voltage dependence
measurements. In this procedure, for a particular temperature we assign the @)
measured at the lowest driving voltage that produces a measurable signal. The
extracted quality factors for all of the measured devices with this method are shown
in Fig. [6.10k, as Q' vs. 7.

The second procedure is extracting the representative value of the () from the
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(a),(c) Quality factor dependence on the driving voltage for two different de-

vices for several values of temperature. We see the overall increase of () at lower

temperatures and the development of the the dependence of the () on the driving

voltage. (b),(d) Loss dependence on the driving voltage for the same two devices.

Note the linear dependence on the driving voltage indicated by linear fits through

the data (in red)
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Figure 6.10: Quality factors as a function of temperature for all of the measured
devices extracted with three different methods. (a) @ was extracted from the @ vs.
‘7g dependence at the minimum detectable driving voltage. (b) @ was extracted
from the @ vs. VgDC dependence at a particular value of the DC gate voltage. (c) @
was measured as a function of temperature, at a particular value of driving voltage
and DC gate voltage. Note the presence of a peak in loss at 280K for all three

figures.
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DC gate voltage dependence measurements. In this procedure, the @) is extracted
at a particular value of the gate voltage as a function of temperature. The resulting
Q! vs. T dependence for this method is shown in Fig. , for the only device
(from Fig. [6.4p) where this method was applicable.

The last method is directly measuring () as a function of temperature at the
lowest detectable driving voltage, at a constant value of the DC gate voltage.
The result is shown in Fig. [6.10k, for the only device (from Fig. [6.4h) where this
measurement was performed.

We see that for all the methods and all the devices, there is an increase in
the value of () at lower temperatures, in some cases by as much as an order of
magnitude. In most devices we also see a dominating peak in the loss around
280K. This is particularly visible in Fig. and c. For the device shown in Fig.
[6.10k, the peak disappeared after several days of measurement and could not be
brought back by either introducing ailﬂ or waterﬂ into the chamber.

We performed a several hour bake-out in vacuum at 350K and several day
bake-out at 400K on another sample (indicated by magenta in Fig. [6.10a). The

heating did not result in any significant changes in the room temperature value of

0.

6.5 Empirical model

Summarizing our findings above, we can say that three major trends were observed
as the temperature was lowered. First, the value of the quality factors increased.

Second, the quality factor dependence on gate voltage changed consistently with

!The chamber was left in ambient pressure overnight.
2A wet napkin was introduced into the chamber over the weekend at ambient
pressure.
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the resonance mode dispersions. The loss mimicked the behavior of the resonance
frequency derivative. Lastly, the loss developed an increasingly stronger linear

dependence on the driving voltages. Below we discuss these findings.

DC gate voltage dependence

The DC gate voltage, V;IDC, controls the resonant frequency of a particular mode
by controlling the tension in the tube (see section for details). Naively, for
frequency-independent loss mechanisms, we expect the quality factor to increase
with the increasing frequency, as the energy of the resonator increases and the
loss stays constant. The similarity between the dispersion derivative and the )’s
behavior, though unexpected, points to the need for understanding the details of
the resonance frequency dispersions.

Pragmatically, we can build an empirical model for Q !, without understanding
the underlying reasons for this behavior. Since we observed similarities between
the loss and the derivative of the frequency dispersion, we fit the Q' vs. V,°¢

curve to the numerical derivative of f; vs. VgDC as:

dfo

Q' = U (6.1)
g

The result of the fit can be seen in Fig. for the two devices shown previously in
Fig. 6.7, The prefactor, a;, comes out to be approximately 3 x 107, Its behavior
with temperature is shown in Fig. and will be addressed later.

Any low-frequency noise that can result in the modulating of the resonance
frequency would cause an inhomogeneous broadening of the response peak. Also,
coupling to external systems with out-of-phase response would lead to the same
effect. This broadening A f would have the same functional form as given by Eq.

0.1l
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fitted to the a; f" functional form.
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The parametric nonlinearity model described in section [5.4] where the reso-
nance frequency is modulated directly by the driving voltage, might also lead to
similar effects. Ro know the functional dependence of the broadening in the case

of parametric nonlinearity, a more accurate, numerical solution of the model given

by Eq. is needed.

Driving voltage dependence

The driving voltage, f/g, controls the AC force driving the resonator. As discussed
in the previous chapter (see section , for small voltages, we expect the resonator
to be in the linear regime and the quality factor to be independent of the driving
voltage. In our measurements we observed that as the temperature decreases, a
linear dependence of the loss on the driving voltage develops. This developing

dependence can be empirically described as
Qil - bl‘;vg + bQ (62)

The behavior of slopes, by, and intercepts, b; from a fit of the device shown in Fig.
as a function of temperature is shown in Fig. and c.

The nonlinear loss behavior shown in Fig. is very different from the non-
linearities that we observed at room temperature shown on Fig. 6.5 and from the
simple model of a Duffing oscillator (see section . First, we expect Q) vs. f/g to
exhibit both a driving voltage independent plateau (linear regime) and a driving
voltage dependent (non-linear regime) region in loss, as was the case for room tem-
perature measurements. Instead, we see either an absence of any loss dependence
on driving voltage or a linear dependence with a variety of slopes. Second, in the
non-linear region, we expect the shape of the signal to deviate from a Lorentzian,

as in the room-temperature case shown in Fig. |6.5p. For the low temperature non-
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linearity, however, the shape of the signal remains Lorentzian. Also, for a typical
Duffing resonator, the resonance frequency of the peak is expected to shift to higher
frequencies for a hardening non-linearity, and to lower frequency for a softening
non-linearity. We, however, observe an inconsistent behavior among the samples,
with resonance frequencies shifting either up or down in different samplesﬁ

It is feasible that the solution to the parametric nonlinearity model defined
by Eq. 5.17] gives a driving voltage dependent broadening, as the driving voltage
would define how much frequency is modulated. The exact functional form of this

dependence can not be extracted without fully solving the model.

Temperature dependence

Figure [6.12h reproduces the results with the three methods that we described
in section E| Panel b zooms in on the data. We see a strong temperature
dependence of the loss. The dependence consists of two parts: a peak in the loss
at 280K, and a temperature-dependent background. It is difficult to separate the
two, as we do not know the exact functional dependence of the peak, and, thus,
can not be certain that we are not measuring the peak’s tail. We try to eliminate
the contribution of the peak by concentrating on the data where the peak is no
longer visible (shown in green in Fig. [6.12)). Phenomenologically, we can fit the

loss with either a linear or a quadratic dependence on temperature, indicated by

$We must note that one possibility is that this shift is not due to the the non-
linearity, but rather to a drift of the effective DC potential of the tube, i.e., its
tension.

“For simplicity we only combined a few of the curves from each method.
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Figure 6.12: An extracted loss as a function of temperature for all of the measured
devices, (a), and a zoom in, (b). Various datasets collected with the three different
methods shown in Fig. |6.10| were combined. Not all of them were selected to avoid
cluttering. A linear (dashed line) and a quadratic (solid line) fits are superimposed

on the data in panel (b).
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a dashed and a solid line, respectively, in Fig. [6.12p.

Q_l = C (T — To)

Q—l — C2T2

(6.3)

The linear fit of the data shown in green yields ¢; = 6.3 x 107°K~!, Ty = 72K, and
the quadratic fit yields ¢y = 1.8 x 107" K2

Finally we can also look at the temperature dependence of the fitting coef-
ficients. Figure [6.13] shows results for aq, b, and by from the last two sections.
Both a; and by show a peak around 280K. For a;, the underlying temperature
dependence is roughly constant, while for by, the background changes with tem-
perature, in a fashion similar to the data from Fig. [6.12] b; does not show any
strong temperature dependence, but due to large scattering in the data, it is hard
to interpret.

Ideally, we would like to combine the empirical findings given by Eqs. [6.1], [6.2]
and into one model. Unfortunately, to investigate the relation between the
three sets of coefficients a1, by and by, and ¢ 5 a complete dataset of Q7! vs. T, ‘N/;,,
and VgDC is necessary. With current data, which contains only specific cuts through

this data set, we can not confidently combine these results into one model.

6.6 Theoretical discussion of possible loss mechanisms

In order to understand these findings we go back to section [2.6] where we have de-
scribed common dissipation sources in NEMS. We can examine these mechanisms
one-by-one to see if their predictions are consistent with our measurements. We
begin our discussion with the extrinsic mechanisms applicable in our system: air
friction, clamping, and ohmic losses. We then move on to the intrinsic mecha-

nisms: surface losses and phonon-phonon interactions. Table summarizes the
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Figure 6.13: Fitting parameters; temperature dependence from a device shown

in Fig. [6.4h. (a) a; from the fits of Q7' = a; f} shown on Fig. [6.11h. (b), (c)
Fitting parameters b; and by from the Q! = bl\7g + by fits shown on Fig. .

Note the presence of a peak at 280K for a; and bs.
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Table 6.1: Calculation of various dissipation processes for a standard CNT. We
see that none of the extrinsic mechanisms typically limiting the performance of the

resonator could dominate the losses.

Dissipation Process Q1 Q Value
. I p(2nr2L) 7
Air friction o kT s 4 x 10
3 5
Clamping (£).(£)", (1) | 10%10°, 10
. (Cc'v)? woT 5
Ohmic kC (1+(£07)2) 10
: o?’TE woT

Thermoelastic effect - (1 +(£OT)2) 400
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calculated contributions to dissipation (1) for a typical CNT device (table [4.1]).

We discuss them in detail below.

6.6.1 Extrinsic losses

We observed no quality factor dependence on pressure at the experimental vacuum
levels (< 10~*torr). This is consistent with the calculations of Bhiladvala and Wang
(2004) for the quality factor of doubly clamped beams, which predict the interval
of large losses due to air friction at pressures of 1 — 10torr, and consecutively,
negligible losses at the experimental vacuum levels. We can thus eliminate air
friction as a relevant dissipation source in our experiment.

In section [2.6] we were given three different expressions for the dissipation due
to clamping. Using each of these, we calculate the upper bound on the quality
factor to be Qeamping < 10%,10%,10%, respectively; at least an order of magnitude
higher than observed. Also, we observed similar quality factors in devices with
three different geometries (see Fig. [6.2d), and thus with very different clamping
and different expected levels of dissipation. This argues against clamping losses as
an important source of dissipation.

If ohmic loss dominated, we would expect lower quality factors from the devices
with higher resistances. In our samples there was no correlation between the
electrical resistance of the device and the measured quality factor (see Fig. [6.2q).
We can also calculate the expected dissipation from this mechanism, using Eq.
with the typical CNT parameters (table , which yields the upper bound
on the quality factors of Qopmine < 10°. We can thus eliminate ohmic losses as the
largest dissipation source.

Residues from processing and other contamination of the CNT could also pro-
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vide a mechanisms for dissipation. However, devices produces with the third
method yield clean devices, as the CNT is grown last and does not undergo any
processing, and thus should give higher ()’s. As we do not observe any systematic
difference between the devices created with different methods, we conclude that

contamination is not likely to be the dominant dissipation source in our system.

6.6.2 Intrinsic losses

Among the intrinsic losses, the possible dissipation sources are phonon-phonon
interactions, electron-phonon interactions and surface losses. Naively, we expect
losses associated with surface effects to be negligible for CNT resonators, as CN'T's
have well terminated bonds on the surface. But, as illustrated in Fig. [6.1p, the
quality factors observed in CNT resonators follow the linear trend in the @ vs.
device volume dependence observed with MEMS and NEMS. Such a trend is typi-
cally attributed to surface-related loss mechanisms, as the surface-to-volume ratio
increases for smaller structures.

The large dissipation peak at 280K could also be attributed to the losses in
the surface water layer. Similar peaks have been observed in the dissipation de-
pendence on temperature (Hutchinson et al., 2004)) and are typically attributed to
Debye type losses with a thermally activated process (see section . To correctly
extract the attempt time and the activation temperature, a complete measurement
of the peak for samples with different vibration frequency is needed. Our data,
unfortunately, does not allow us to accurately extract these parameters. We can
say from the position of the peak, however, that the activation temperature is
around 280K, suspiciously close to the freezing temperature of water.

Further experiments, in particular mapping out the position of the peak in
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temperature as a function of the gate voltage (i.e., resonance frequency) are needed
to investigate its exact nature. Repeating the experiments after passing a sufficient
DC current through the CNT to heat it up and evaporate the water layer on the
CNT would also provide valuable information on the relation of the peak to water.

Surface losses are then a possible source of dissipation. It is not clear that
surface effects can also explain the observed loss dependence on the gate voltage
and derivative of the dispersion. So, we conclude that even though surface losses
are likely to be an important source of dissipation, there are other mechanisms
that also contribute to the overall dissipation.

Phonon-phonon interactions set the fundamental limit on the resonator’s per-
formance. Levels of dissipation close to this limit have been achieved in Si NEMS
(Roszhart|, 1990, Yasumura et al., [2000)).

The geometry of our system differs from the typical NEMS geometry for which
the standard thermoelastic theory (see section was developed. First, as CNTs
are initially slacked, their profile is a catenary (see section. The motion during
a vibration is not the pure flexural motion that it is for NEMS. Second, unlike
in NEMS, the CNT is under tension, defined by the DC gate voltage. These
difference make the standard thermoelastic effect not directly applicable to our
system; however, given the lack of a theory that captures all of the nuances, we
use the existing models.

Depending on the length of the phonon mean free path compared to the size
of the system, thermoelastic losses manifest themselves as either the thermoelastic
effect (diffusive limit) or the Landau-Rumer effect (ballistic limit). In NTs, the
measured length of the acoustic phonons is on the order of 0.5 — 1pym (Kim et al.

2001). As our device lengths are on the same order of magnitude, we treat the



154

(a) 1 calculations
" Yuetal (Ref. 12) (b) 3s00f ~ L=08um
08 - Paop et al. Nanoletters 6, (2006) 3000} ot e :::;::
v ' i sigia L5 g
¥ 5ol ~2s00t 0 —~2 Fotowm
= 06 . L .
% - e 2000t
o4 ® 3
° 1500}
= o *
02} u 1000} /
5 500 Pop et al. Nanoletters 6, (2006)
100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 8OO
T (K) T(K)
(c) W r———7——71T 71771717
Hone et al. &.FPhys. 74, (2002) (d)q (0 chvslliie il Ul
X
500 [ Meagured - 0
< 400 |- . .
° [ SWNTs | M id
-5x10
2 so0f . 3
=
— 3 T H -
O 200 - -1x10
100 2 % Ni/Co catalyst -
L 0 500 1006
u A L A [ A L L ?lxi
0 50 100 150 200 250 300
T (K)
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phonon-phonon losses in our system in the framework of thermoelastic effect (see
section . The degree of loss associated with thermoelastic effect is given by Eq.

2.51], which we reproduce here for convenience.

=5 (5 G) 64

The first factor, the dissipation strength o*TE/C, defines the possible maximum
loss due to this mechanism. Using the values for a = 1.5 x 107°K~! (Kwon
et al., 2004), x = 2500W/mK (Kim et al., 2001, |[Pop et al., 2005), £ = 1TPa,
and C' = 600mJ/gK x 2300kg/m? (Hone et al. 2002) found in the literature, we
calculate a lower bound of Qinermoeclastic > 20 at room temperature. To extract
the temperature dependence we note that «,x and C have linear temperature
dependence in the region of interest (Kwon et all 2004, Kim et al., |2001, |Pop

et al., 2005, Hone et al.; 2002) (see Fig.|6.14]), and using Eq. we conclude that
Q' ~T? (6.5)

which is consistent with our measurements.

The second factor in Eq. [6.4) defines the relative time scales for heat and strain.
Here 7 is the characteristic time for heat transfer between the points of maximum
and minimum strain. Our vibrations are neither purely flexural nor purely lon-
gitudinal. We can calculate the characteristic time scales for both effects. For
flexural vibration, 7 is given by the diameter, d, of the CNT and the heat diffusion

constant.
dC

= (m)2k

(6.6)

This model yields a dissipation time of 1ps, many orders of magnitude smaller
than the time for one oscillation, 1/f = 20ns. Thus, this model does not lead to

significant losses.
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For longitudinal vibrations, the resonance wavelength for the n'" harmonic for
a typical device of length L = 1.75um is given by A\, = 2L/n = 3.5um/n. 7 is

then given by the mode wavelength and the heat diffusion constant (Eq. [2.53)):

T=" (6.7)

For a finite DC gate voltage, our CNT resonators are typically under tension, which
means that during an oscillation all of the tube is strained and thus the extra heat
has to flow in from the contacts due to the lack of the compressed regions in the

tube. For a tensed string model 7 is then given by

*c
(m)2

T =

(6.8)

For the fundamental mode, both of these models lead to the same result. The
characteristic time dissipation is then 2ns, comparable to the time for one oscil-
lation 1/f = 20ns. Using Eq. , this yields Qrgp =~ 400 for a typical device
at room temperature. Assuming the same linear temperature dependencies as
above, we find that for both models 7 is independent of temperature, and thus the
temperature dependence of () is given solely by the dissipation strength term.

For typical resonance frequencies (f = 50MHz) wr < 1, the time-scales factor

of the loss reduces to —%"— ~ w7. Equation [6.4] reduces to either

1+ (wT)

2 2

., aTE <2L>
- w, [ = 6.9
@ (27r)2/<ow n (6.9)

for the “longitudinal” model or
2
4, o TE 9

= ———w,L 6.10
Q )R (6.10)

for the “tensed string” model.
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For a given resonance mode, we expect the loss to increase with the increasing
vibration frequency (i.e., with increasing DC gate voltage) as the strain is modu-
lated faster, while the heat flow time remains the same. This hold for both models.
The time scales for heat flow and one vibration become closer to each other, and

the amount of loss increases.
Q' ~ wn(VPO) ~ PO (6.11)

The loss dependence on the mode number at a given DC gate voltage is different
for the two models above. For the longitudinal model, the resonance frequency
increases with the mode number, w, ~ n, and thus the strain is modulated faster.
At the same time, though, the number of nodes increases proportionally, decreasing
the heat flow time. We expect the loss factor to decrease with the mode number
n.

Wn

Q '~ ~1/n (6.12)

n2
For the tensed string model we expect the opposite behavior, since the heat path

does not change for different modes, but the vibration frequency does.
Ql~w,~n (6.13)

In our measurement, we observed a complicated, device dependent quality fac-
tor dependence on the DC gate voltage that, if anything, points to the increase of
the quality factor with increasing gate. We have also observed a correlation of the
quality factor with the mode number for most devices, as indicated in Fig. [6.2,
that agrees better with the longitudinal model rather than the tension model.

We see that overall, the loss in CNT resonators can not be explained with a
single theoretical model, as different trends in its behavior point to different dissi-

pation mechanisms. First, with few assumptions, the thermoelastic effect predicts
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a reasonable value for the dissipation strength in our system, and predicts the
correct underlying temperature dependence. However, the relative time scales for
the heat flow and vibration are still not understood. Second, the correlation of the
loss and the derivative of the resonance frequency dispersion could be attributed
to the inhomogeneous noise broadening, but the exact nature of the noise is still
under question. Last, some surface-related dissipation processes could account for
the presence of the peak in loss at 280K, but the exact process is still unclear. The
overall complicated behavior of the loss indicates that no single dissipation mecha-
nism is the dominant one, and that the correct theoretical model is a combination

of several mechanisms.

6.7 Conclusion

In this chapter we studied the quality factor in CNT resonators. At room tempera-
ture values in the range of 30—200 were measured, and at low temperatures quality
factors increased by an order of magnitude. Values up to 1,000 were observed. We
investigated the quality factor dependence on various device and resonance char-
acteristics. We found no correlation to the device geometry, the device’s electrical
resistance, or the chamber pressure. We did find, however, a dependence on the
resonance mode number, driving voltage, and the DC gate voltage. We also found
that temperature had a significant effect on the the behavior of the system, and
led to a large increase of the quality factor values.

From these dependencies we extracted that ) changed linearly with the mode
number, that @' had the same DC gate voltage dependence as the derivative of
the frequency dispersion curve (Q~' ~ f’), and that Q! depended linearly on

the driving voltage (Q~! ~ f/g) We also observed a peak in the dissipation at
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280K that could not be correlated with the changes in either the dispersion or
the driving voltage. The underlying temperature dependence of () could be fit to
either a linear (Q~! ~ T — Tj), or to a quadratic (Q~' ~ T?) dependence.

After considering several dissipation mechanisms, we concluded that the overall
values of the (Q’s and their temperature dependence point to the presence of several
dissipation mechanisms of comparable strength. We identified the surface effects,
inhomogeneous response broadening, and thermoelastic effect as the possible key

players, but more work needs to be done to confirm this.



CHAPTER 7

CONCLUSIONS

7.1 Summary

We have demonstrated the first tunable self-detecting carbon nanotube resonator.
We investigated the resonator frequency tunability, the limits on the resonator’s
performance, and the origin of losses in the resonator.

To perform these measurements, we designed a fabrication procedure described
in Chapter [3|that resulted in suspended CNT devices in a transistor geometry. We
were able to electrically excite and detect the doubly-clamped CNT vibrational
modes using a capacitive actuation and detection scheme in conjunction with a
mixing technique described in Chapter [3]

In Chapter [4] we described our results on the resonance frequency tuning with
an applied gate voltage. We could understand the behavior of the frequency vs.
gate voltage behavior both qualitatively and numerically by modeling the resonator
as a slack beam, to which we apply an external uniform downward force set by
the DC gate voltage. Depending on the magnitude of the force, the nanotube can
enter three different regimes: bending, catenary, and elastic, in each of which a
different type of frequency gate voltage dependence is observed.

In Chapter [5, we further analyzed the performance of a CNT resonator and
investigated its limitations. We developed a fitting procedure to extract the impor-
tant parameters of a resonator: the resonant frequency, the quality factor, and the
amplitude of the induced resonant current. Using this procedure, we estimated the
measured force sensitivity of 1.5fN/v/Hz, consistent with theoretical calculations

of electron Johnson-Nyquist noise; at temperatures below 1K sensitivities down to
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aN/ v/Hz should be achievable. We also estimated the upper bound on the reso-
nant frequency detectable by our techniques, limiting ourselves to the fundamental
harmonic. We find that at low temperatures devices with lengths down to 30nm,
corresponding to resonant frequencies of ~ 150GHz, should produce a detectable
signal.

Finally, in Chapter [6] we investigated the losses in CNT resonators. By inves-
tigating the quality factor dependence on various parameters, we found a strong
quality factor dependence on temperature and a complicated dependence on the
mode number, the DC gate voltage, and the driving voltage. At room temperature
values in the range of 30 — 200 were measured, and at low temperatures quality
factors increased by an order of magnitude, with values observed up to 1,000. We
were able to empirically fit the loss dependencies on the derivative of the disper-
sion mode, driving voltage and temperature. After considering several dissipation
mechanisms, we concluded that the overall values of the ()’s and their behavior
point to the presence of several equally important dissipation mechanisms. We
concluded that the overall values of the ()’s and their behavior point to surface
effects, coupling to external systems, and the thermoelastic effect as possible key
mechanisms in dissipation. Further investigation is necessary to confirm these

findings.

7.2 Future work

The small mass of CNT resonators makes them very attractive for two potential
experiments.
The first experiment is to build a mass sensor. The typical mass of a CNT

used in our devices is on the order of 7ag. Using Eq. for mass sensitivity, we



162

see that even at room temperature with the quality factors around 70, detecting
masses down to 200zg, comparable with the highest sensitivities up-to-date (Ekinci
et al., 2004, [Ilic et al., 2004)), should be possible. At lower temperatures, 7' ~ 100K,
the mass sensitivity should increase by at least an order of magnitude as quality
factors increase to 1,000. This yields the smallest detectable mass of 10zg, or only
30 Au atoms.

The second application is to study single electron charging (Woodside, 2001))
and quantum mechanical (LaHaye et al., 2004)) effects on the mechanical motion
of the CNT resonator. At low temperatures, 7' < 10K, a quantum dot can form on
the nanotube. The transport through the CNT reduces to single electron charging
events, which manifest themselves as oscillations in the conductance as a function
of the gate voltage. These oscillations result in improvement of the force sensitivity,
as discussed in Chapter |5, They also are expected to affect the mechanical motion
of the CNT resonator, causing both a shift in the resonant frequency and an
additional dissipation, analogously to the system of a vibrating cantilever on top
of a quantum dot, as was studied by |Woodside| (2001)).

Quantum effects become important when the mechanical resonator is cooled
further down to its “quantum temperature,” T = hwo/kg. For a typical 100MHz
resonator, this means cooling to ~ 1mK, which is hardly achievable with current
technology. As calculated in Chapter [5, however, the upper limit on resonance
frequency detectable with this technique is in the hundreds of GHz. For a few-
GHz device, the quantum temperature rises to a few mK, accessible with a dilution
refrigerator. To see quantum effects, a displacement sensitivity comparable to the
“standard quantum limit,” Azgqr = 1/h/2mwy, is necessary. Since the product of

mwy is independent of length, for a fundamental harmonic, the required sensitivity
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is & 5pm, for either a typical device or a few-GHz device, comparable to what has
been achieved in the literature and perhaps feasible with our detection technique

for shorter tube-gate distances.



APPENDIX A

BEAM MECHANICS

Let us consider a small section of a bent beam. One side of it is compressed
and another side is stretched, which implies that there is line of neutral stress
along the length of the beam (See Fig. . Let Z be the coordinate along the
beam, and ¢, Z the coordinates perpendicular to the beam. For the bending radius
of curvature R, the relative elongation of an infinitesimal segment previously of

length dz along the beam (or else strain) is given by

B dr' — dx
N dx

€

=z/R (A1)
Using Hooke’s law we have that the stress in the beam, o, is given by

z
—eE=_F A2
o=c¢€ 7 (A.2)

where F is the elastic modulus of the beam.

We can define the torque due to the internal stresses in the cross section of
the beam. For each area element dA there is a force od A acting on it along the &
direction. The torque created by it with respect to the z axis is equal to zadff,

which means that the total torque about the g axis is
M:/zadA:—/sz (A.3)
A R Ja
I
where it is useful to define the quantity I, - the moment of inertia of the beam
around the g axis.
For small deformations 1/R = d*z/dx? and thus

d?z

M - _Elyﬁ
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(b)

Figure A.1: A schematic of a doubly clamped beam made out of material with
elastic modulus E. (a). The beam, with dimensions ¢ X w x L, has a cross-sectional
area A, and a moment of inertia I with respect to the Z-axis. The beam is subject
to a load K , and tension T. (b). A segment of the beam, expanded on one side

and contracted on the other. The line of neutral stress is indicated in dash.
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The total force due to internal stress applied to a cross section of the beam F' is

equal to

F= /A odA (A.5)

If K is the external force per unit length applied to the beam, the balance of forces
requires that the sum of all forces acting on the segment of length dl is equal to
the external force acting on that segment. If F is the total internal force on the
lower base of the segment and F + dF is the total internal force applied to the
base, their difference dF should balance out the total external force applied to the
segment Kdl. From this we can derive that

dF 4
Y e A6

The balance of torques requires that the difference in the internal torques dM
acting on the top and bottom bases of the segment of the beam is equal to the

torque created by the total force applied to the bases F.

-

dM +dl x F =0 (A7)

dividing everything by the length of the segment dl, and noticing that di, /dl = tis

the unitary tangential vector, leads to

dM -~ .
W—Fxt (A.8)

For small bending, the radius of curvature is large and thus we can assume
that the direction of ¢ changes slowly, or in other words that d /dl is small. If we

differentiate Eq. along the length

—

M dF . dt

L L i+ FxZ A.
az oa TRy (A.9)
Using Eq. [A.6] we get
EBM . . - dt
I _75><K+F><a (A.10)
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from the arguments above we know that the term ‘;—f is small and we can neglect

the second term in the equation except for the cases where the force Fis large, or
in other words for the beams under tension. If we set the force along the beam to

tension

F,=T (A.11)

and use Eq.[A4] Eq. reduces to

EI,Y: —T%: K =0 (412

d* d?
ElLgi —Tgs — Ky =



APPENDIX B

NANOTUBE IN THE SEM BEAM

A home built insert for a Keck LEO SEM system shown in Fig. allowed us
to simultaneously image and perform electrical measurements on a CNT device.
The sample were imaged at acceleration voltages of 1kV, which allowed a resolution
of better than 10nm.

As can be seen in Fig. CNTs can be easily imaged in the SEM. The differ-
ence between a suspended and a non-suspended portion of tubes is clearly visible.
The non-suspended portion appears “fuzzy”, due to charging of the underlying
silicon oxide, while the suspended portion appears as a sharp, thin line.

The purpose of this setup was to electrically actuate vibrations of doubly
clamped CNT devices and to detect them by imaging. For one device, as shown in
Fig.[B.2] an image resembling a vibrating CNT was obtained. This result, however,
could not be reproduced with further samples, and, as discussed below, imaging
in a SEM beam proved to be very destructive to the sample both structurally and
electrically.

Figure [B.3] shows the structural damage that can be done to a CNT sample.
On panels b and ¢ we see a suspended CNT before and after intensive imaging.
During imaging, the apparent diameter of the CN'T has more than doubled due to
carbon deposition in the SEM. On panels d and e we see another example of this
effect. A series of three “dots” were deposited on the CNT by zooming in on the
corresponding region. The second dot indicated by a line on panel d, was made by
a 4min scan at 400x zoom. The third dot shown on panel e, was made in similar
conditions.

Figure shown the changes in NT’s conductance after imaging in the SEM.
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Figure B.1: Imaging CNTs in a SEM. The suspended portion of the CNT shows
up as a thin, sharp line, while the portion on the oxide appears “fuzzy” due to

charging.
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F=13.0MHz

F=13.6MHz

F=17.03MHz

Figure B.2: NT resonance in a SEM. An SEM image of what may be a vibrating
doubly-clamped CNT. The CNT is excited electrically through an AC voltage on

the substrate.
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Figure B.3: Structural modifications in a SEM. (a) An image of the electrical
measurement setup inside the SEM. (b), (c) A CNT device pre- and post- intensive
imaging. The increase in the apparent CNT diameter is evident. (d), (e) A CNT

device on which a series of “dots” were created by intensive imaging.
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Figure B.4: Conductance modifications in a SEM. Current through CNT at a
10mV source-drain excitation vs. the DC gate voltage before and after imaging in

an SEM, shown in black and red, respectively, for four different devices.
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The conductance was measured by measuring a DC current through the CN'T with
a 10mV source-drain voltage. The graph shows the measured current as a function
of the DC gate voltage; the current measured pre- and post-imaging is shown in
black and red, respectively. For all of the devices the conductance decreases by as
much as an order of magnitude.

Figure shows the behavior of the CN'T’s conductance while imaging. Again,
the graph shows the current through the CNT at 10mV source-drain excitation as
a function of the DC gate voltage. We observed three stages in the conductance
behavior. First, the overall values of conductance decrease. Then the system
develops n-type characteristics. Finally, each pass of the electron beam across the

CNT registers as a spike on the measured current.
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Figure B.5: Further conductance modifications in a SEM. As the CNT device
is imaged, its conductance goes through three different stages of behavior, shown
here for four different devices. First, the overall conductance decreases. Then
n-type behavior develops. Last, the current through the CNT starts registering

individual rasters of the electron beam.



APPENDIX C

MEASUREIT

C.1 Introduction

For the measurements of done in this thesis, a program capable of controlling a
digital-to-analog computer card (DAC) and various instrumentats through a GPIB
interface was needed. For this purpose, we wrote a custom program, “Measureit”.
The program was written using Labview 7.1 and should run on any computer
system that has a NI digital-to-analog card with “DAQmx” driver support and/or
a GPIB card.

The program bundle contains the following files:

1. default.cfg — the default configuration of the program
2. measureit2.2.1lb — the program library

3. sources.dat — a list of supported GPIB instruments
4. manual.pdf — this document

We first describe the general capabilities of this program and then give some
details of the implementation. Help is also available during the program execution.

It can be accessed by pressing Ctri-H

C.2 General capabilities and usage

The program is capable of three different types of measurement:

1. Setting all output channels to user-defined values, while reading-in values

from all input channels.
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2. Recording input channels as a function of one output channel (sweep).

3. Recording input channels as a function of two or three output channels

(megasweep).

The main window of the program is shown on Fig. [C.I] It has four different
panels: the data controls, the channels, the scan controls, and the plot. The data
controls panel defines the program’s configuration and data-saving parameters;
the channels panel defines the input and output channels; the scan controls panel
defines parameters for a single channel scan; the plot panel graphically shows the
result of a single-channel scan. Before we describe the areas one by one, a word
of caution: Currently no error catching is implemented in the program, thus the

user must avoid canceling any started operations.

Channels

The channels panel allows the user to select and define the instruments he/she
wants to control in a particular measurement.

For input, only the first four input channels of the DAC are supported. The
user can only add the input channels sequentially: from 0 to 3. For each channel,
the user can specify a factor that always multiplies the raw input value, and the
channel name. The resulting value (raw value x Factor) is displayed and saved in
the Value field (first column on the input channels panel). The input values are
read in every 150 ms. The channel name is used for defining scans and graphs.

For output, both of the DAC output channels and a number of instruments
controlled through the GPIB interface are supported. The list of all supported
instruments can be seen in table [C.I] In order to use the DAC channels, the user

must ensure that the two DAC output channels are added in the NI channel control
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software. They should be named AO0 and AO1. If a second DAC is available, its
output channels should be named A0O2 and AOS.

For each output channel, the user selects the controlled instrument, the value
to set, the scaling factor (the value set on the instrument is Value x Factor), the
channel name, the limits on the applied values, the default increment step, and
the scanning speed (in steps per second). Even though the latter four fields are
grayed out, they can be edited. The output channels are set to their respective
values only when the Update button is pushed. If the value requested exceeds the

limits, the limit value is set.

Scan controls

The scan controls panel defines the parameter of a single scan. The top drop-down
menu, lets the user select, by name, the channel to scan of the defined output
channels. The scan limits, increment, and scan speed, defined in the channels
panel, are automatically copied to the Parameters cluster. The scan starts at the
current value of that channel. The direction, and whether the scan stops at the
limits, can be set by in the bottom of the panel by the Direction and Stop at the
end controls. The scan starts after the Start button is pushed. Any of the scan
parameters, including the direction, and the stop condition can be changed during
the scan. The current value of the channel is displayed in the Value field. The

recorded input and output channel values are stored in a buffer.

Plot

The plot panel displays the value of one of the input channels as a function of

the scanned channel. User can select, by name, which input channel is displayed,
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the graph bin size (whether every, or every second, or every third, etc. point is

displayed), and whether the graph is to be updated.

Data controls

The upper portion of the data controls panel contains program configuration pa-
rameters. The Quit button quits the program, the Megasweep button opens the
megascan panel, which we describe below, and the Load CFG and Save CFG but-
tons load and save the program configuration. The configuration consists of the
defined channels, and which channel is currently selected to be scanned. The de-
fault configuration has one input channel and two output channels, as indicated in
Fig. [C.1]

The lower portion of the data controls panel defines how data is saved. The
data is saved in ASCII column format, by stacking together values from all defined
input and output channels. The scanned channel is in the first column, followed
by the input channels, and followed by the other output channels. The file name
for the data file has three parts: the name, the date, and the counter. The name
is defined by the user in the File Name field, the date is inserted automatically in
the “mmdd” format, and the counter is automatically incremented after each run.
The incrementing option can be turned of, if desired. Pushing the Save button,

saves the data and clears the buffer; pushing the Clear button, clears the buffer.

Megascan

The megascan panel is opened by pushing the Megasweep button on the data
controls panel. This panel consists of three subpanels: the scan controls, the data

controls, and the plot. These subpanels are very similar in their functions to the
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panels described above.

The scan controls subpanel defines the megascan to be performed. The scan
consists of one channel (the inner channel) being scanned up and down, while an-
other channel (the outer I channel) is incremented after each scan. Optionally, a
third channel (outer 2 channel) can be incremented at the end of each 2D megas-
can. The user selects, by name, the channels for the inner and outer loops, and
modifies the scan parameters: limits, increment, and speed. For the inner channel
the user must specify separately the up and down scan speeds, and for the outer
channels the user may set a delay field, which defined the time the program waits
(in seconds) after the increment of that channel. The scan parameters can not be
changed during the scan. The current value for the outer 1 and outer 2 channels
are displayed in the bottom of the subpannel.

The plot control displays graphically one of the input channels as a function
of the inner channel value. The data is displayed only after the data was taken,
i.e. when the outer channel is incremented. Optionally, the user may select not to
graph the data.

The data controls subpanel defines how the data is saved and contains program
controls buttons. The Quit button return to the main window, and the Start/Stop
button starts or stops the scan. The bin field allows the user to define the binning
the data, and the drop menu next to it allows the user to select whether the values
from the up-scan, or both, up- and down-scans, are saved. At the beginning of
the scan, the user is prompted for a filename. Again, as in the previous section,
the filename consists of three parts: the name, the date, and the counter. The
name is copied from the File Name field on the front window, the date is inserted

automatically in the “mmdd” format, and the counter in this case is by default
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“M1u”, for the scan up, and “M1d” for the scan down, and is not automatically
incremented. As the program overwrites any existing files with the same name, the
filename must be edited or changed by the user at the filename prompt. Pressing
the Start/Stop button when the scan is running stops the scan, as soon as the
inner channel reaches the limit, not instantly. The data is saved to the file after
each scan of the inner channel. Consequent scans are appended. The direction

and the time left to completion are updated after each scan of the inner channel.

C.3 Internal coding

The following description of the code is very general and assumes knowledge of

Labview.

Variables

The three most important variables in the program are: Channels In and Channels
Out (arrays of clusters that contain information about the channels) and Data (a

number array that contains the measured data).

VIs

The program’s library contains 24 VlIs; the top-level VI is “measureit.vi”. A list
of all other VIs is presented in table and the hierarchy of the VIs is shown in

Fig.[C.3] In this section we discuss three most important VIs.

setChannel

The setChannel VI takes the channel number, and value as inputs and outputs

the error string. In the core of this VI is a case structure that, depending on
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i Hierarchy

Figure C.3: Hierarchy of the VIs used in measureit
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the channel_number (the sequence number of the instrument in the sources.dat
file), either sets a particular DAC channel to the supplied value, or sends a GPIB
request to set the instrument to that value. Some instrument dependent limits are
hard-coded in the VI, and an error message is displayed if those limits are reached.

Detailed description of the controlling DAC and GPIB channels is given later.

measureit

This is top-level program. On the most outer layer it consists of a two frame
sequence. The first frame is initialization (Fig. [C.4). During initialization, the
DAC card input channels are started and and input task is created. The the
channels are loaded from the default configuration file, using readCFG. The data
buffer is initialized.

The second frame is the main program. It contains an infinite loop wired to
the Quit button. The loop contains case structures for each of the buttons on the
front panel (Fig. and the code for normal operation (Fig. C.6]). The loop is
executed every 150 ms, set by a timer. Every button is checked for being pressed,
and if so, the corresponding case structure is executed. Also, as indicated in Fig.
the input values are read-in, using DAQ_getChannels, and the scan parameters
for the selected channel to scan are updated.

Figure shows some VIs wired to the their respective buttons. The Load
CFG, Save CFG, Megasweep and Save buttons are wired to the readCFG, saveCFG,
megascan and saveData, respectively. The Clear button is wired to the struc-
ture where the data buffer, Data, is set to zero. The Update button is wired to
setChannel.

Finally, the Start button is wired to the case structure that executes a single
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initialize data
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Figure C.4: Initialization part of measureit.
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Figure C.5: An example of VIs wired to their respective buttons
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channel scan. The scan consists of four parts. The first three parts are in the first
frame of the structure, shown in Fig. [C.7} the last part is in the second frame of
the structure. Below is the pseudo-code for the scan. Each line is indicated in Fig.

[C.7 by its respective number.

1. Start the DAC output channels
2. Start the DAC input channels
3. While the scan is within limits (checked by the stop_scan)

(a) Calculate the new value for the inner channel and update the direction

of the scan (update_in scan)
(b) Update the inner channel (setChannel )
(c) Read in the scan parameters
(d) Read in the input values (DAQ_getChannels )

(e) Appended to the data array and are graph the data
4. Stop DAC output channels
5. Stop DAC input channels
6. Append the output values are appended to the data array (not shown in Fig.

C.7)

megascan

This VI is very similar to the operation of the scan structure in the front panel.
The two main parts are: channel initialization, and the megascan. The megascan

can be described with the following pseudocode:
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1. Sweep inner channel to initial conditions (sweepChannel). If the down speed

is set to 0, then set the inner channel (reset_channel)
2. Create two files to save data (make filename and createMegaFile).
3. While the Start/Stop button is not pushed

(a) While the outer 1 channel is within limits

i. Scan the inner channel up (sweepChannel)
ii. Graph the results ( graph_array).
iii. Scan the inner channel down (sweepChannel)
iv. Save Data to the up-scan, and down-scan files
v. Increment outer 1 channel 1
vi. Check if the scan is at limits (update_in megascan)
vii. Update the time left for the scan (estimate_time)

(b) If the scan is 3D and the 2D scan is over, update the outer 2 channel and

check if the scan is limits (update_in megascan and reset_channel)

4. Save the values of the in-channels and out-channels

DAC channels

The code for setting and reading the DAC channels is shown in Fig. [C.8] For DAC
channels both operations have three parts: start, read /write, stop. Explicitly
executing this three parts ensures faster operational speed, as otherwise, the chan-
nel is started and stopped at during each access attempt. These three parts are
typically separated in the execution of the program. The channel is started during

initialization, read or written to during the main execution cycle, and stopped
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Figure C.8: Setting and reading DAC and GPIB channels
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after all the data is collected. Channel starting can be done in two ways. The
code for input channels in Fig. creates a new input task by accessing phys-
ical channels Dev1/ai0:3 with DAQmx Create Channel. Alternatively for output
channels, the code references the already created global output task AOQO. Both
tasks are then started using DAQmx Start Task. The DAC channels are read with
DAQmx Read (Analog 1D DBL NChan 1Samp) and set by DAQmx Write (Analog

DBL 1Chan 1Samp). The tasks are stopped using DAQmx Stop Task.

GPIB channels: Adding another instrument

The code for talking to the GPIB-interfaced instruments is sightly simpler. Sample
code is shown in Fig. The value-to-set is transmitted using GPIB Write, which
takes instrument specific command and GPIB address as inputs. The command is
a string, whose format can by typically found in the instrument’s manual. A typical
command is: “FR 10MZ ” (sets the frequency of HP8657B source to 10MHz).
New GPIB-controlled instruments can be added to measureit. Adding another
instrument is done by modifying the sources.dat file and the setChannel VI. Below

is the procedure:
1. Modify the sources.dat file

(a) Open sources.dat in a text editor

(b) Add a line with the instruments name and function at the end. For
example: “HP8657B_Freq” for a HP 8657B high frequency source, fre-
quency control channel. Do not delete the empty first line, and do not

modify the existing instruments

(c) Save the file as text
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2. Modify the setChannel.vi file

(a) Open setChannel VI in Labview

(b) In the main case structure add a new case. The number of the case
must match the sequential number of your instrument (the empty line

counts as zero)

(¢) In the new empty case, make a comment with the name of your instru-

ment

(d) Copy the code from another case, for example case number 8 for the

“HP8657B _Freq”

(e) Modify the code. Keep in mind that the value is passed in absolute
numbers, not scaled by a factor
i. Change the bounds to appropriate values
ii. Change the factor, if the instrument command takes scaled values

iii. Change the GPIB command string according to the instrument’s
manual. For example for “HP8657B_Freq” the command string is

“FR” + value [MHz| + “MZ”

iv. Change the GPIB address

(f) Save the VI

3. Run setChannel.vi and try to set some value
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